id ftingv:oai:www.earth-prints.org:2122/2811
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Glacial earthquakes
Glacial dynamics
Gutenberg-Richter relationship
Double-difference hypocentre location
Repeating earthquake
04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
spellingShingle Glacial earthquakes
Glacial dynamics
Gutenberg-Richter relationship
Double-difference hypocentre location
Repeating earthquake
04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
Danesi, S.
Bannister, S.
Morelli, A.
Repeating earthquakes from rupture of an asperity under an Antarctic outlet glacier
topic_facet Glacial earthquakes
Glacial dynamics
Gutenberg-Richter relationship
Double-difference hypocentre location
Repeating earthquake
04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
description The inner regions of the Antarctic continent are generally regarded as nearly aseismic, although microseismicity is known to occur beneath some outlet ice streams, related to the interaction between the fast flowing ice and the bedrock. Here we show the occurrence of unusual earthquakes beneath an Antarctic outlet glacier that share almost the same magnitude, pointing to the repeated rupture of a single asperity. These seismic events produce waveforms with very high similarity and uncommon spectrum and are tightly clustered in space but, unlike other reported instances of repeating earthquakes on a patch of the San Andreas Fault, they occur in frequent irregular swarms. Evidence locates these events at the rock–ice interface under the glacier, and shows the existence of stick–slip motion on a smaller scale than the large slow slip events detected by global seismographs. Seismic behaviour of large glaciers can presumably be connected to surges in ice motion. This study determines a little known environment for fracture dynamics studies, while also contributing to the understanding of the coupling processes between fast flowing glaciers and bedrock that influence ice stream evolution and stability. Progetto Nazionale di Ricerca in Antartide (PNRA) Antarctica New Zealand (ANZ) Published 151–158 3.3. Geodinamica e struttura dell'interno della Terra JCR Journal reserved
author2 Danesi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Bannister, S.; GNS Science, PO Box 30368, Lower Hutt, New Zealand
Morelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia
GNS Science, PO Box 30368, Lower Hutt, New Zealand
format Article in Journal/Newspaper
author Danesi, S.
Bannister, S.
Morelli, A.
author_facet Danesi, S.
Bannister, S.
Morelli, A.
author_sort Danesi, S.
title Repeating earthquakes from rupture of an asperity under an Antarctic outlet glacier
title_short Repeating earthquakes from rupture of an asperity under an Antarctic outlet glacier
title_full Repeating earthquakes from rupture of an asperity under an Antarctic outlet glacier
title_fullStr Repeating earthquakes from rupture of an asperity under an Antarctic outlet glacier
title_full_unstemmed Repeating earthquakes from rupture of an asperity under an Antarctic outlet glacier
title_sort repeating earthquakes from rupture of an asperity under an antarctic outlet glacier
publisher Elsevier
publishDate 2007
url http://hdl.handle.net/2122/2811
http://www.elsevier.com/locate/epsl
https://doi.org/10.1016/j.epsl.2006.10.023
long_lat ENVELOPE(-60.729,-60.729,-64.008,-64.008)
geographic Andreas
Antarctic
New Zealand
The Antarctic
geographic_facet Andreas
Antarctic
New Zealand
The Antarctic
genre Antarc*
Antarctic
Antarctica
Antarctica New Zealand
Antartide
genre_facet Antarc*
Antarctic
Antarctica
Antarctica New Zealand
Antartide
op_relation Earth and Planetary Science Letters
253 (2007)
[1] A.C. Johnston, Suppression of earthquakes by large continental ice sheets, Nature 330 (1987) 467–469. [2] A. Reading, Antarctic seismicity and neotectonics, in: Royal Society of New Zealand (Eds.) Antarctica at the close of a Millennium, R. Soc. NZ Bull., 35, 2002, pp 479–484. [3] S. Bannister, B.L.N. Kennett, Seismic activity in the Transantarctic Mountains—results from a broadband array deployment, Terra Antartica 9 (2002) 41–46. [4] M. Frezzotti, A. Capra, L. Vittuari, Comparison between glacier ice velocities inferred from GPS and sequential satellite images, Ann. Glaciol. 27 (1998) 54–60. [5] M. Frezzotti, I.E. Tabacco, A. Zirizzotti, Ice discharge of eastern dome C drainage area, Antarctica, determined from airborne radar survey and satellite image, Analysis, J. Glaciol. 46 (2000) 253–264. [6] V. Damm, Subice morphology deduced by Radio Echo Soundings (RES) in the area between David and Mawson Glaciers, Victoria Land, Geol. Jahrb. B89 (1996) 321–331. [7] I.E. Tabacco, C. Bianchi, M. Chiappini, A. Zirizzotti, E. Zuccheretti, Analysis of bottom morphology of the David Glacier–Drygalski Ice Tongue, East Antarctica, Ann. Glaciol. 30 (2000) 47–51. [8] M. Frezzotti, L. Vittuari, V. Maggi, Preliminary GPS measurement of David Glacier and Drygalski Ice Tongue, Terra Antartica Rep. 1 (1997) 13–17. [9] M.R. Bennett, Ice streams as the arteries of an ice sheet: their mechanics, stability and significance, Earth Sci. Rev. 61 (2002) 309–339. [10] R.B. Alley, D.D. Blankenship, C.R. Bentley, S.T. Rooney, Deformation of till beneath ice stream B,West Antarctica, Nature 322 (1986) 57–59. [11] W.S.B. Paterson, The Physics of Glaciers, third ed.Pergamon, Oxford, 1994. [12] R.LeB. Hooke, Principles of Glacier Mechanics, first ed.Cambridge Univ. Press, Cambridge, 2005. [13] G. Ekström, M. Nettles, G.A. Abers, Glacial earthquakes, Science 302 (2003) 622–624. [14] S. Anandakrishnan, R.B. Alley, Tidal forcing of basal seismicity of ice stream C,West Antarctica, observed far inland, J. Geophys. Res. 102 (1997) 15183–15196. [15] S. Anandakrishnan, C.R. Bentley, Micro-earthquakes beneath Ice Streams B and C, West Antarctica: observations and implications,, J. Glaciol. 39 (1993) 455–462. [16] W.L. Wolf, J.N. Davies, Glacier-generated earthquakes from Prince William Sound, Alaska, Bull. Seismol. Soc. Am. 76 (2) (1986) 367–379. [17] W.B. Kamb, Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion, J. Geophys. Res. 96 (1991) 16585–16595. [18] F.W. Klein, User's guide to HYPOINVERSE-2000, a fortran program to solve for earthquake locations and magnitudes, U.S. Geol. Survey Open File Report, 2002, pp. 02–171. [19] F. Waldhauser, hypoDD — a program to compute Double- Difference hypocentre locations, U.S. Geol. Survey Open File Report, 2001, pp. 01–113. [20] W.X. Du, C.H. Thurber, M. Reyners, D. Eberhart-Phillips, H.J. Zhang, New constraints on seismicity in theWellington region of New Zealand from relocated earthquake hypocentres, Geophys. J. Int. 158 (2004) 1088–1102. [21] E. Rignot, Mass balance of East Antarctic glaciers and ice shelves from satellite data, Ann. Glaciol. 34 (2002) 217–227. [22] J.N. Brune, Tectonic stress and spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75 (1970) 4997–5009. [23] I.A. Beresnev, What we can and cannot learn about earthquake sources from the spectra of seismic waves, Bull. Seismol. Soc. Am. 91 (2) (2001) 397–400. [24] I.A. Beresnev, Source parameters observable from the corner frequency of earthquake spectra, Bull. Seismol. Soc. Am. 92 (5) (2002) 2047–2048. [25] F. Salvini, F. Storti, Cenozoic tectonic lineaments of the Terra Nova Bay region, Ross Embayment, Antarctica, Gl. Planet. Ch. 23 (1999) 129–144. [26] B. Gutenberg, C.F. Richter, Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34 (1944) 185–188. [27] Z. Olami, H.J.S. Feder, K. Christensen, Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68 (1992) 1244–1247. [28] R.M. Nadeau, T.V. McEvilly, Clustering and periodic recurrence of microearthquakes on the San-Andreas Fault at Parkfield, California, Science 267 (1995) 503–507. [29] R.M. Nadeau, T.V. McEvilly, Seismological studies at Parkfield V: characteristic microearthquake sequences as fault-zone drilling targets, Bull. Seismol. Soc. Am. 87 (6) (1997) 1463–1472. [30] R.M. Nadeau, L.R. Johnson, Seismological studies at Parkfield VI: moment release rates and estimates of source parameters for small repeating earthquakes, Bull. Seismol. Soc. Am. 88 (3) (1998) 790–814. [31] C.G. Sammis, R.M. Nadeau, L.R. Johnson, How strong is an asperity? J. Geophys. Res. 104 (1999) 10609–10619. [32] C.G. Sammis, J.R. Rice, Repeating earthquakes as low-stressdrop events at a border between locked and creeping fault patches, Bull. Seismol. Soc. Am. 91 (3) (2001) 532–537. [33] R.B. Alley, In search of ice–stream sticky spots, J. Glaciol. 39 (1993) 447–454. [34] The DWcluster events primarily occurred on Julian days 337–340, 345–346, and 362–364 (2003). [35] I. Joughin, S. Tulaczyk, M. Fahnestock, R. Kwok, A mini-surge on the Ryder Glacier, Greenland, observed by satellite radar interferometry, Science 274 (1996) 228–230. [36] P. Wessel, W.H.F. Smith, New version of the Generic Mapping Tools released, EOS, Trans. Am. Geophys. Un. 76 (1995) 329
http://hdl.handle.net/2122/2811
http://www.elsevier.com/locate/epsl
doi:10.1016/j.epsl.2006.10.023
op_rights restricted
op_doi https://doi.org/10.1016/j.epsl.2006.10.023
container_title Earth and Planetary Science Letters
container_volume 253
container_issue 1-2
container_start_page 151
op_container_end_page 158
_version_ 1766255646726946816
spelling ftingv:oai:www.earth-prints.org:2122/2811 2023-05-15T13:51:39+02:00 Repeating earthquakes from rupture of an asperity under an Antarctic outlet glacier Danesi, S. Bannister, S. Morelli, A. Danesi, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia Bannister, S.; GNS Science, PO Box 30368, Lower Hutt, New Zealand Morelli, A.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia GNS Science, PO Box 30368, Lower Hutt, New Zealand 2007-01-15 http://hdl.handle.net/2122/2811 http://www.elsevier.com/locate/epsl https://doi.org/10.1016/j.epsl.2006.10.023 en eng Elsevier Earth and Planetary Science Letters 253 (2007) [1] A.C. Johnston, Suppression of earthquakes by large continental ice sheets, Nature 330 (1987) 467–469. [2] A. Reading, Antarctic seismicity and neotectonics, in: Royal Society of New Zealand (Eds.) Antarctica at the close of a Millennium, R. Soc. NZ Bull., 35, 2002, pp 479–484. [3] S. Bannister, B.L.N. Kennett, Seismic activity in the Transantarctic Mountains—results from a broadband array deployment, Terra Antartica 9 (2002) 41–46. [4] M. Frezzotti, A. Capra, L. Vittuari, Comparison between glacier ice velocities inferred from GPS and sequential satellite images, Ann. Glaciol. 27 (1998) 54–60. [5] M. Frezzotti, I.E. Tabacco, A. Zirizzotti, Ice discharge of eastern dome C drainage area, Antarctica, determined from airborne radar survey and satellite image, Analysis, J. Glaciol. 46 (2000) 253–264. [6] V. Damm, Subice morphology deduced by Radio Echo Soundings (RES) in the area between David and Mawson Glaciers, Victoria Land, Geol. Jahrb. B89 (1996) 321–331. [7] I.E. Tabacco, C. Bianchi, M. Chiappini, A. Zirizzotti, E. Zuccheretti, Analysis of bottom morphology of the David Glacier–Drygalski Ice Tongue, East Antarctica, Ann. Glaciol. 30 (2000) 47–51. [8] M. Frezzotti, L. Vittuari, V. Maggi, Preliminary GPS measurement of David Glacier and Drygalski Ice Tongue, Terra Antartica Rep. 1 (1997) 13–17. [9] M.R. Bennett, Ice streams as the arteries of an ice sheet: their mechanics, stability and significance, Earth Sci. Rev. 61 (2002) 309–339. [10] R.B. Alley, D.D. Blankenship, C.R. Bentley, S.T. Rooney, Deformation of till beneath ice stream B,West Antarctica, Nature 322 (1986) 57–59. [11] W.S.B. Paterson, The Physics of Glaciers, third ed.Pergamon, Oxford, 1994. [12] R.LeB. Hooke, Principles of Glacier Mechanics, first ed.Cambridge Univ. Press, Cambridge, 2005. [13] G. Ekström, M. Nettles, G.A. Abers, Glacial earthquakes, Science 302 (2003) 622–624. [14] S. Anandakrishnan, R.B. Alley, Tidal forcing of basal seismicity of ice stream C,West Antarctica, observed far inland, J. Geophys. Res. 102 (1997) 15183–15196. [15] S. Anandakrishnan, C.R. Bentley, Micro-earthquakes beneath Ice Streams B and C, West Antarctica: observations and implications,, J. Glaciol. 39 (1993) 455–462. [16] W.L. Wolf, J.N. Davies, Glacier-generated earthquakes from Prince William Sound, Alaska, Bull. Seismol. Soc. Am. 76 (2) (1986) 367–379. [17] W.B. Kamb, Rheological nonlinearity and flow instability in the deforming bed mechanism of ice stream motion, J. Geophys. Res. 96 (1991) 16585–16595. [18] F.W. Klein, User's guide to HYPOINVERSE-2000, a fortran program to solve for earthquake locations and magnitudes, U.S. Geol. Survey Open File Report, 2002, pp. 02–171. [19] F. Waldhauser, hypoDD — a program to compute Double- Difference hypocentre locations, U.S. Geol. Survey Open File Report, 2001, pp. 01–113. [20] W.X. Du, C.H. Thurber, M. Reyners, D. Eberhart-Phillips, H.J. Zhang, New constraints on seismicity in theWellington region of New Zealand from relocated earthquake hypocentres, Geophys. J. Int. 158 (2004) 1088–1102. [21] E. Rignot, Mass balance of East Antarctic glaciers and ice shelves from satellite data, Ann. Glaciol. 34 (2002) 217–227. [22] J.N. Brune, Tectonic stress and spectra of seismic shear waves from earthquakes, J. Geophys. Res. 75 (1970) 4997–5009. [23] I.A. Beresnev, What we can and cannot learn about earthquake sources from the spectra of seismic waves, Bull. Seismol. Soc. Am. 91 (2) (2001) 397–400. [24] I.A. Beresnev, Source parameters observable from the corner frequency of earthquake spectra, Bull. Seismol. Soc. Am. 92 (5) (2002) 2047–2048. [25] F. Salvini, F. Storti, Cenozoic tectonic lineaments of the Terra Nova Bay region, Ross Embayment, Antarctica, Gl. Planet. Ch. 23 (1999) 129–144. [26] B. Gutenberg, C.F. Richter, Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34 (1944) 185–188. [27] Z. Olami, H.J.S. Feder, K. Christensen, Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Phys. Rev. Lett. 68 (1992) 1244–1247. [28] R.M. Nadeau, T.V. McEvilly, Clustering and periodic recurrence of microearthquakes on the San-Andreas Fault at Parkfield, California, Science 267 (1995) 503–507. [29] R.M. Nadeau, T.V. McEvilly, Seismological studies at Parkfield V: characteristic microearthquake sequences as fault-zone drilling targets, Bull. Seismol. Soc. Am. 87 (6) (1997) 1463–1472. [30] R.M. Nadeau, L.R. Johnson, Seismological studies at Parkfield VI: moment release rates and estimates of source parameters for small repeating earthquakes, Bull. Seismol. Soc. Am. 88 (3) (1998) 790–814. [31] C.G. Sammis, R.M. Nadeau, L.R. Johnson, How strong is an asperity? J. Geophys. Res. 104 (1999) 10609–10619. [32] C.G. Sammis, J.R. Rice, Repeating earthquakes as low-stressdrop events at a border between locked and creeping fault patches, Bull. Seismol. Soc. Am. 91 (3) (2001) 532–537. [33] R.B. Alley, In search of ice–stream sticky spots, J. Glaciol. 39 (1993) 447–454. [34] The DWcluster events primarily occurred on Julian days 337–340, 345–346, and 362–364 (2003). [35] I. Joughin, S. Tulaczyk, M. Fahnestock, R. Kwok, A mini-surge on the Ryder Glacier, Greenland, observed by satellite radar interferometry, Science 274 (1996) 228–230. [36] P. Wessel, W.H.F. Smith, New version of the Generic Mapping Tools released, EOS, Trans. Am. Geophys. Un. 76 (1995) 329 http://hdl.handle.net/2122/2811 http://www.elsevier.com/locate/epsl doi:10.1016/j.epsl.2006.10.023 restricted Glacial earthquakes Glacial dynamics Gutenberg-Richter relationship Double-difference hypocentre location Repeating earthquake 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics article 2007 ftingv https://doi.org/10.1016/j.epsl.2006.10.023 2022-07-29T06:04:34Z The inner regions of the Antarctic continent are generally regarded as nearly aseismic, although microseismicity is known to occur beneath some outlet ice streams, related to the interaction between the fast flowing ice and the bedrock. Here we show the occurrence of unusual earthquakes beneath an Antarctic outlet glacier that share almost the same magnitude, pointing to the repeated rupture of a single asperity. These seismic events produce waveforms with very high similarity and uncommon spectrum and are tightly clustered in space but, unlike other reported instances of repeating earthquakes on a patch of the San Andreas Fault, they occur in frequent irregular swarms. Evidence locates these events at the rock–ice interface under the glacier, and shows the existence of stick–slip motion on a smaller scale than the large slow slip events detected by global seismographs. Seismic behaviour of large glaciers can presumably be connected to surges in ice motion. This study determines a little known environment for fracture dynamics studies, while also contributing to the understanding of the coupling processes between fast flowing glaciers and bedrock that influence ice stream evolution and stability. Progetto Nazionale di Ricerca in Antartide (PNRA) Antarctica New Zealand (ANZ) Published 151–158 3.3. Geodinamica e struttura dell'interno della Terra JCR Journal reserved Article in Journal/Newspaper Antarc* Antarctic Antarctica Antarctica New Zealand Antartide Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Andreas ENVELOPE(-60.729,-60.729,-64.008,-64.008) Antarctic New Zealand The Antarctic Earth and Planetary Science Letters 253 1-2 151 158