CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland

Carbon dioxide emissions and heat flow through soil, steam vents and fractures, and steam heated mud pools were determined in the Reykjanes geothermal area, SW Iceland. Soil diffuse degassing of CO2 was quantified by soil flux measurements on a 600 m by 375 m rectangular grid using a portable closed...

Full description

Bibliographic Details
Published in:Applied Geochemistry
Main Authors: Fridriksson, T., Kristjansson, R., Armannsson, H., Margretardottir, E., Olafsdottir, S., Chiodini, G.
Other Authors: Fridriksson, T.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland, Kristjansson, R.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland, Armannsson, H.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland, Margretardottir, E.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland, Olafsdottir, S.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland, Chiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia, Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland, Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
Format: Article in Journal/Newspaper
Language:English
Published: 2006
Subjects:
Online Access:http://hdl.handle.net/2122/2680
https://doi.org/10.1016/j.apgeochem.2006.04.006
id ftingv:oai:www.earth-prints.org:2122/2680
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic geothermal
emissions
03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
spellingShingle geothermal
emissions
03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
Fridriksson, T.
Kristjansson, R.
Armannsson, H.
Margretardottir, E.
Olafsdottir, S.
Chiodini, G.
CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland
topic_facet geothermal
emissions
03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
description Carbon dioxide emissions and heat flow through soil, steam vents and fractures, and steam heated mud pools were determined in the Reykjanes geothermal area, SW Iceland. Soil diffuse degassing of CO2 was quantified by soil flux measurements on a 600 m by 375 m rectangular grid using a portable closed chamber soil flux meter and the resulting data were analyzed by both a graphical statistical method and sequential Gaussian simulations. The soil temperature was measured in each node of the grid and used to evaluate the heat flow. The heat flow data were also analyzed by sequential Gaussian simulations. Heat flow from steam vents and fractures was determined by quantifying the amount of steam emitted from the vents by direct measurements of steam flow rate. The heat loss from the steam heated mud pools was determined by quantifying the rate of heat loss from the pools by evaporation, convection, and radiation. The steam flow rate into the pools was calculated from the observed heat loss from the pools, assuming that steam flow was the only mechanism of heat transport into the pool. The CO2 emissions from the steam vents and mud pools were determined by multiplying the steam flow rate from the respective sources by the representative CO2 concentration of steam in the Reykjanes area. The observed rates of CO2 emissions through soil, steam vents, and steam heated mud pools amounted to 13.5 ± 1.7, 0.23 ± 0.05, and 0.13 ± 0.03 tons per day, respectively. The heat flow through soil, steam vents, and mud pools was 16.9 ± 1.4, 2.2 ± 0.4, and 1.2 ± 0.1 MW, respectively. Heat loss from the geothermal reservoir, inferred from the CO2 emissions through the soil amounts to 130 ± 16 MW of thermal energy. The discrepancy between the observed heat loss and the heat loss inferred from the CO2 emissions is attributed to steam condensation in the subsurface due to interactions with cold ground water. These results demonstrate that soil diffuse degassing can be a more reliable proxy for heat loss from geothermal systems than soil ...
author2 Fridriksson, T.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland
Kristjansson, R.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland
Armannsson, H.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland
Margretardottir, E.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland
Olafsdottir, S.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland
Chiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland
Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia
format Article in Journal/Newspaper
author Fridriksson, T.
Kristjansson, R.
Armannsson, H.
Margretardottir, E.
Olafsdottir, S.
Chiodini, G.
author_facet Fridriksson, T.
Kristjansson, R.
Armannsson, H.
Margretardottir, E.
Olafsdottir, S.
Chiodini, G.
author_sort Fridriksson, T.
title CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland
title_short CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland
title_full CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland
title_fullStr CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland
title_full_unstemmed CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland
title_sort co2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the reykjanes geothermal area, sw iceland
publishDate 2006
url http://hdl.handle.net/2122/2680
https://doi.org/10.1016/j.apgeochem.2006.04.006
long_lat ENVELOPE(-22.250,-22.250,65.467,65.467)
geographic Reykjanes
geographic_facet Reykjanes
genre Iceland
genre_facet Iceland
op_relation Applied Geochemistry
´ gu´stsdo´ ttir, A.M., Brantley, S.L., 1994. Volatile fluxes integrated over 4 decades at Grı´msvo¨tn volcano, Iceland. J. Geophys. Res. 99 B5, 9505–9522. Aiuppa, A., Caleca, A., Federico, C., Gurrieri, S., Valenza, M., 2004. Diffuse degassing of carbon dioxide at Somma–Vesuvius volcanic complex (Southern Italy) and its relation with regional tectonics. J. Volcanol. Geotherm. Res. 133, 55–79. Allard, P., Carbonelle, J., Dajlevic, D., Le Bronec, J., Morel, P., Robe, M.C., Maurenas, J.M., Faivre-Pierret, R., Martin, D., Sabroux, J.C., Zettwoog, P., 1991. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351, 387–391. A ´ rmannsson, H., 1991 Geothermal energy and the environment. In: Geoscience Society of Iceland. Conf. Geology and Environmental Matters. Prog. and Abstr., pp. 16–17 (In Icelandic). A ´ rmannsson, H., Benjamı´nsson, J., Jeffrey, A., 1989. Gas changes in the Krafla geothermal system, Iceland. Chem. Geol. 76, 175–196. A ´ rmannsson, H., Fridriksson, Th., Kristja´nsson, B.R., 2005. CO2 emissions from geothermal power plants and natural geothermal activity in Iceland. Geothermics 34, 286–296. Arno´rsson, S., 1991. Estimate of natural CO2 and H2S flow from Icelandic high-temperature geothermal areas. In: Conf. Geology and Environmental Matters. Prog. and Abstr., pp. 18–19 (In Icelandic). Arno´rsson, S., Gı´slason, S.R., 1994. CO2 from magmatic sources in Iceland. Miner. Mag. 58A, 27–28. Arno´rsson, S., Gunnlaugsson, E., 1985. New gas geothermometers for geothermal exploration – calibration and application. Geochim. Cosmochim. Acta 49, 1307–1325. Arno´rsson, S., Fridriksson, Th., Gunnarsson, I., 1998. Gas chemistry of the Krafla Geothermal field, Iceland. In: Arehart G.B., Hulston J.R. (Eds)., Proceedings of the 9th International Symposium Water–Rock Interaction, WRI-9, pp. 613– 616. Arno´rsson, S, Sigurdsson, S., Svavarsson, H., 1982. The chemistry of geothermal waters in Iceland 1. Calculation of aqueous speciation from 0 C to 370 C. Geochim. Cosmochim. Acta 46, 1513–1532. Ba´rdarson, G.G., 1931. The warm sea water pool at Reykjanes. Na´ttu´rufreadingurinn 1, 78–80 (in Icelandic). Baubron, J.C., Allard, P., Toutain, J.P., 1991. Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344, 51–53. Bjo¨rnsson, S., O´ lafsdo´ ttir B., To´masson J., Jo´nsson J., Arno´ rsson, S., Sigurmundsson, S.G., 1971. Reykjanes. Final report on investigations in the geothermal area. National Energy Authority report (in Icelandic). Bjo¨rnsson, G., O´ lafsson, M., Jo´nasson, H., Magnu´sson, Th. M., 2004. Production studies of wells RN-9, RN-10, RN-11 and RN-12 in Reykjanes (2002–2004). Iceland GeoSurvey report I´ SOR-2004/019 (in Icelandic). Brombach, T., Hunziker, J.C, Chiodini, G., Cardellini, C., Marini, L., 2001. Soil diffuse degassing and thermal energy fluxes from the southern Lakki plain, Nisyros (Greece). Geophys. Res. Lett. 28, 67–72. Cardellini, C., Chiodini, G., Frondini, F., 2003. Application of stochastic simulations to CO2 flux from soil: mapping and quantifying gas release. J. Geophys. Res. 108, 2425. doi:10.1029/2002JB002165. Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543–552. Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G., 2001. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys. Res. 106 B8, 16213–16221. Chiodini, G., Frondini, F., Raco, B., 1996. Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull. Volc. 58, 41–50. Chiodini, G., Granieri, D., Avino, R., Caliro, S., Costa, A., Werner, C., submitted for publication. Carbon dioxide diffuse degassing: implications on the energetic state of volcanic/ hydrothermal systems. J. Geophys. Res. Clifton, A.E., Schlische, R.W., 2003. Fracture populations on the Reykjanes Peninsula, Iceland: comparison with experimental clay models of oblique rifting. J. Geophys. Res. 108 B2, 2074. D’Amore, F., Truesdell, A.H., 1985. Calculations of geothermal reservoir temperatures and steam fractions from gas compositions. GRC Trans. 9, 305–310. David, M., 1977. Geostatistical Ore Reserve Estimations. Elsevier, New York. Dawson, G.B., 1964. The nature and assessment of heat flow from hydrothermal areas. N.Z. J. Geol. Geophys. 7, 155–171. Deutsch, C.V., Journel, A.G., 1998. GSLIB: Geostatistical Software Library and Users Guide. Oxford University Press, New York. Elmarsdo´ ttir, A ´ ., Ingimarsdo´ ttir, M., Hansen, I´., O´ lafsson, J.S., Magnu´sson, S., 2003. Vegetation and invertebrates in six high-temperature geothermal areas in Iceland. Icelandic Museum of Natural History and University of Iceland Institute of Biology report (in Icelandic). Favara, R., Giammanco, S., Inguaggiato, S., Pecoraino, G., 2001. Preliminary estimate of CO2 output from Pantelleria Island volcano (Sicily, Italy): evidence of active mantle degassing. Appl. Geochem. 16, 883–894. Franz, G., Libscher, A., 2004. Physical and chemical properties of the epidote minerals – an introduction. In: Libscher, A., Franz, G. (Eds.), Reviews in Mineralogy and Geochemistry, vol. 56. Mineralogical Society of America and Geochemical Society, pp. 1–80. Franzson H., 2004. Reykjanes high-temperature geothermal system. Geological and geothermal model. Iceland GeoSurvey report I´SOR-2004/012 (in Icelandic). Franzson H., Thordarson S., Bjo¨rnsson G., Gudlaugsson S.Th., Richter B., Fridleifsson G.O´ ., Tho´rhallsson S., 2002. Reykjanes high-temperature field SW-Iceland. Geology and hydrothermal alteration of well RN-10. In: Proceedings of the 27th Workshop Geothermal Reservoir Engineering, Stanford University. Gerlach, T.M., McGee, K.A., Elias, T., Sutton, A.J., Doukas, M.P., 2002. Carbon dioxide emission rate of Kilauea Volcano: implications for primary magma and the summit reservoir. J. Geophys. Res. 107 B9, 2189. Gı´slason, S.R., 2000. Carbon dioxide from Eyjafjallajo¨ kull and chemical composition of spring water and river water in the Eyjafjalljo¨kull – My´rdalsjo¨kull region. Science Institute, University of Iceland, Report RH-06-2000. Granieri, D., Chiodini, G., Marzocchi, W., Avino, R., 2003. Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): influence of environmental and volcanic parameters. Earth Plan. Sci. Lett. 212, 167–179. Gudmundsdo´ ttir, A.L., 1988. Natural heat flow through surface in geothermal areas in the Nesjavellir area. University of Iceland 4th year honors thesis. Herna´ndez, P.A., Notsu, K., Salazar, J.M., Mori, T., Natale, G., Okada, H., Virgili, G., Shimoike, Y., Sato, M., Pe´rez, N.M., 2001a. Carbon dioxide degassing by advective flow from Usu volcano, Japan. Science 292, 83–86. Herna´ndez, P.A., Perez, N.M., Salazar, J.M., Nakai, S., Notsu, K., Wakita, H., 1998. Diffuse emissions of carbon dioxide, methane, and helium-3 from Teide volcano, Tenerife, Canary Islands. Geophys. Res. Lett. 25, 3311–3314. Herna´ndez, P.A., Salazar, J.M., Shimoike, Y., Mori, T., Notsu, K., Pe´rez, N.M., 2001b. Diffuse emissios of CO2 from Miyakejima volcano, Japan. Chem. Geol. 177, 175–185. Jakobsson, S.P., Jo´nsson, J., Shido, F., 1978. Petrology of the Western Reykjanes Peninsula, Iceland. J. Petrol. 19, 669–705. Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92 – a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 bar to 5000 bar and 0 C to 1000 C. Comput. Geosci. 18, 899–947. Jo´nsson, J., 1968. Changes in the geothermal area at Reykjanes in 1967. National Energy Authority Report 10421 OST 5 (in Icelandic). Jo´nsson, J., 1983. Historic eruptions on the Reykjanes Peninsula. Na´ttu´rufraedingurinn 52, 127–139 (in Icelandic). Karlsdo´ ttir, R., 2005. TEM-measurements at Reykjanes 2004. Iceland GeoSurvey Report I´SOR-2005/002 (in Icelandic). Kerrick, D.M., 2001. Present and past nonanthropogenic CO2 degassing from the solid Earth. Rev. Geophys. 39, 564– 585. Lewicki, J.L., Connor, C., St-Amand, K., Stix, J., Spinner, W., 2003. Self-potential, soil CO2 flux and temperature on Masaya volcano, Nicaragua. Geophys. Res. Lett. 30, 1817. Lonker, S.W., Franzson, H., Kristmannsdo´ ttir, H., 1993. Mineral– fluid interactions in the Reykjanes and Svartsengi geothermal systems, Iceland. Am. J. Sci. 293, 605–670. Marty, B., Tolstikhin, I.N., 1998. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol. 145, 233–248. Mo¨ rner, N.A., Etiope, G., 2002. Carbon degassing of the lithosphere. Global Planet. Change 33, 185–203. Nehring, N.L., D’Amore, F., 1984. Gas chemistry of the Cerro Prieto, Mexico. Geothermics 13, 75–89. Notsu, K., Sugiyama, K., Hosoe, M., Uemura, A., Shimoike, Y., Tsunomori, F., Sumino, H., Yamamoto, J., Mori, T., He´rnandez, P.A., 2005. Diffuse CO2 efflux from Iwojima volcano, Izu-Ogasawara arc, Japan. J. Volc. Geoth. Res. 139, 147–161. O´ skarsson, N., 1996. Carbon dioxide from large volcanic eruptions. Short term effects. In: Biological Society of Iceland. The carbon budget of Iceland Conference, Reykjavı´k 22–23 November 1966. Prog. and Abstr., p. 17 (In Icelandic). Pa´lmason, G., Saemundsson, K., 1974. Iceland in relation to Mid-Atlantic Ridge. Ann. Rev. Earth Plan. Sci. 2, 25–50. Pa´lmason, G., Johnsen, G.V., Torfason, H., Sæmundsson, K, Ragnars, K, Haraldsson, G.I., Halldo´rsson, G.K., 1985. Assessment of geothermal energy in Iceland. Orkustofnun OS-85076/JHD-10. Saemundsson, K., Jo´hannesson, H., 2004. Geothermal map of Iceland. Iceland GeoSurvey and Icelandic Energy Authority. Saemundsson, K., Tho´rhallsson, S., Bjo¨rnsson, G., Karlsdo´ ttir, R., Franzson, H., 2004. Siting of drillholes RN-17 to RN-21 at Reykjanes. Iceland GeoSurvey report I´ SOR-04088 (in Icelandic). Salazar, J.M.L., Herna´ndes, P.A., Pe´rez, N.M., Melia´n, G., A ´ lvarez, J., Segura, F., Notsu, K., 2001. Diffuse emission of carbon dioxide from Cerro Negro volcano, Nicaragua, Central America. Geophys. Res. Lett. 28, 4275–4278. Sapper, K., 1908. On some Icelandic volcanic fissures and crater rows. Neu. Jahrb. Min. Geol. Pala¨ontol., 26 (in German). Schmidt, E., Grigull, U., 1979. Properties of Water and Steam in SI-units: 0–800 C, 0–1000 bar. Springer-Verlag, Berlin Heidelberg, R. Oldebourg, Mu¨nchen. Sigurgeirsson, M.A´ ., 1995. The younger Stampar eruption at Reykjanes. Na´ttu´rufraedingurinn 64, 211–230 (in Icelandic). Sigurgeirsson, M.A´ ., 2004. A chapter in the eruption history of Reykjanes: eruption episode two thousand years ago. Na´ttu´rufraedingurinn 72, 21–28 (in Icelandic). Sinclair, A.J., 1974. Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor. 3, 129– 149. Sorey, M.L., Colvard, E.M., 1994. Measurements of heat and mass flow from thermal areas in Lassen Volcanic National Park, California, 1984–1993. U.S.G.S. Water Resour. Invest. Rep., 94–4180-A. Stefa´nsson, A., Arno´ rsson, S., 2002. Gas pressures and redox reactions in geothermal fluids in Iceland. Chem. Geol. 190, 251–271. Sutton, O.G., 1953. Micrometeorology. McGraw-Hill, New York. Sveinbjo¨rnsdo´ ttir, A.E., 1991. composition of geothermal minerals from saline and dilute fluids – Krafla and Reykjanes, Iceland. Lithos 27, 301–315. Thorkelsson, Th., 1928. On thermal activity in Reykjanes. Rit Vı´sindafe´lags I´slendinga, 3. Werner, C., Brantley, S., 2003. CO2 emissions from the Yellowstone volcanic system. Geochem. Geophys. Geosyst. 4, 1061. Werner, C., Brantley, S.L., Boomer, K., 2000. CO2 emissions related to the Yellowstone volcanic system 2. Statistical sampling, total degassing, and transport mechnanisms. J. Geophys. Res. 105, 10831–10846. Werner, C., Christenson, B.J., Scott, K., Britten, K., Kilgour, G., 2004. Monitoring CO2 emissions at White Island volcano, New Zealand: evidence for total decrease in magmatic mass and heat output. In: Wanty R.B., Seal II R.R. (Eds.), Proceedings of the 11th International Symposium Water– Rock Interaction, WRI-11, pp. 223–226. Wolfe, C.J., Bjarnason, I.Th., VanDecar, J.C., Solomon, S.C., 1997. Seismic structure of the Iceland mantle plume. Nature 385, 245–247. Zhao, Ping, A ´ rmannsson, H., 1996. Gas geothermometry in selected Icelandic geothermal fields with comparative examples from Kenya. Geothermics 25, 307–347. Th. Fridriksson et al. / Applied Geochemistry 21 (2006) 1551–1569 1569
http://hdl.handle.net/2122/2680
doi:10.1016/j.apgeochem.2006.04.006
op_rights restricted
op_doi https://doi.org/10.1016/j.apgeochem.2006.04.006
https://doi.org/10.1029/2002JB002165
container_title Applied Geochemistry
container_volume 21
container_issue 9
container_start_page 1551
op_container_end_page 1569
_version_ 1766039820709134336
spelling ftingv:oai:www.earth-prints.org:2122/2680 2023-05-15T16:49:39+02:00 CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland Fridriksson, T. Kristjansson, R. Armannsson, H. Margretardottir, E. Olafsdottir, S. Chiodini, G. Fridriksson, T.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland Kristjansson, R.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland Armannsson, H.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland Margretardottir, E.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland Olafsdottir, S.; Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland Chiodini, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia Iceland GeoSurvey, Grensa´ svegi 9, 108 Reykjavı´k, Iceland Istituto Nazionale di Geofisica e Vulcanologia, Sezione OV, Napoli, Italia 2006 http://hdl.handle.net/2122/2680 https://doi.org/10.1016/j.apgeochem.2006.04.006 en eng Applied Geochemistry ´ gu´stsdo´ ttir, A.M., Brantley, S.L., 1994. Volatile fluxes integrated over 4 decades at Grı´msvo¨tn volcano, Iceland. J. Geophys. Res. 99 B5, 9505–9522. Aiuppa, A., Caleca, A., Federico, C., Gurrieri, S., Valenza, M., 2004. Diffuse degassing of carbon dioxide at Somma–Vesuvius volcanic complex (Southern Italy) and its relation with regional tectonics. J. Volcanol. Geotherm. Res. 133, 55–79. Allard, P., Carbonelle, J., Dajlevic, D., Le Bronec, J., Morel, P., Robe, M.C., Maurenas, J.M., Faivre-Pierret, R., Martin, D., Sabroux, J.C., Zettwoog, P., 1991. Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351, 387–391. A ´ rmannsson, H., 1991 Geothermal energy and the environment. In: Geoscience Society of Iceland. Conf. Geology and Environmental Matters. Prog. and Abstr., pp. 16–17 (In Icelandic). A ´ rmannsson, H., Benjamı´nsson, J., Jeffrey, A., 1989. Gas changes in the Krafla geothermal system, Iceland. Chem. Geol. 76, 175–196. A ´ rmannsson, H., Fridriksson, Th., Kristja´nsson, B.R., 2005. CO2 emissions from geothermal power plants and natural geothermal activity in Iceland. Geothermics 34, 286–296. Arno´rsson, S., 1991. Estimate of natural CO2 and H2S flow from Icelandic high-temperature geothermal areas. In: Conf. Geology and Environmental Matters. Prog. and Abstr., pp. 18–19 (In Icelandic). Arno´rsson, S., Gı´slason, S.R., 1994. CO2 from magmatic sources in Iceland. Miner. Mag. 58A, 27–28. Arno´rsson, S., Gunnlaugsson, E., 1985. New gas geothermometers for geothermal exploration – calibration and application. Geochim. Cosmochim. Acta 49, 1307–1325. Arno´rsson, S., Fridriksson, Th., Gunnarsson, I., 1998. Gas chemistry of the Krafla Geothermal field, Iceland. In: Arehart G.B., Hulston J.R. (Eds)., Proceedings of the 9th International Symposium Water–Rock Interaction, WRI-9, pp. 613– 616. Arno´rsson, S, Sigurdsson, S., Svavarsson, H., 1982. The chemistry of geothermal waters in Iceland 1. Calculation of aqueous speciation from 0 C to 370 C. Geochim. Cosmochim. Acta 46, 1513–1532. Ba´rdarson, G.G., 1931. The warm sea water pool at Reykjanes. Na´ttu´rufreadingurinn 1, 78–80 (in Icelandic). Baubron, J.C., Allard, P., Toutain, J.P., 1991. Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature 344, 51–53. Bjo¨rnsson, S., O´ lafsdo´ ttir B., To´masson J., Jo´nsson J., Arno´ rsson, S., Sigurmundsson, S.G., 1971. Reykjanes. Final report on investigations in the geothermal area. National Energy Authority report (in Icelandic). Bjo¨rnsson, G., O´ lafsson, M., Jo´nasson, H., Magnu´sson, Th. M., 2004. Production studies of wells RN-9, RN-10, RN-11 and RN-12 in Reykjanes (2002–2004). Iceland GeoSurvey report I´ SOR-2004/019 (in Icelandic). Brombach, T., Hunziker, J.C, Chiodini, G., Cardellini, C., Marini, L., 2001. Soil diffuse degassing and thermal energy fluxes from the southern Lakki plain, Nisyros (Greece). Geophys. Res. Lett. 28, 67–72. Cardellini, C., Chiodini, G., Frondini, F., 2003. Application of stochastic simulations to CO2 flux from soil: mapping and quantifying gas release. J. Geophys. Res. 108, 2425. doi:10.1029/2002JB002165. Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543–552. Chiodini, G., Frondini, F., Cardellini, C., Granieri, D., Marini, L., Ventura, G., 2001. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J. Geophys. Res. 106 B8, 16213–16221. Chiodini, G., Frondini, F., Raco, B., 1996. Diffuse emission of CO2 from the Fossa crater, Vulcano Island (Italy). Bull. Volc. 58, 41–50. Chiodini, G., Granieri, D., Avino, R., Caliro, S., Costa, A., Werner, C., submitted for publication. Carbon dioxide diffuse degassing: implications on the energetic state of volcanic/ hydrothermal systems. J. Geophys. Res. Clifton, A.E., Schlische, R.W., 2003. Fracture populations on the Reykjanes Peninsula, Iceland: comparison with experimental clay models of oblique rifting. J. Geophys. Res. 108 B2, 2074. D’Amore, F., Truesdell, A.H., 1985. Calculations of geothermal reservoir temperatures and steam fractions from gas compositions. GRC Trans. 9, 305–310. David, M., 1977. Geostatistical Ore Reserve Estimations. Elsevier, New York. Dawson, G.B., 1964. The nature and assessment of heat flow from hydrothermal areas. N.Z. J. Geol. Geophys. 7, 155–171. Deutsch, C.V., Journel, A.G., 1998. GSLIB: Geostatistical Software Library and Users Guide. Oxford University Press, New York. Elmarsdo´ ttir, A ´ ., Ingimarsdo´ ttir, M., Hansen, I´., O´ lafsson, J.S., Magnu´sson, S., 2003. Vegetation and invertebrates in six high-temperature geothermal areas in Iceland. Icelandic Museum of Natural History and University of Iceland Institute of Biology report (in Icelandic). Favara, R., Giammanco, S., Inguaggiato, S., Pecoraino, G., 2001. Preliminary estimate of CO2 output from Pantelleria Island volcano (Sicily, Italy): evidence of active mantle degassing. Appl. Geochem. 16, 883–894. Franz, G., Libscher, A., 2004. Physical and chemical properties of the epidote minerals – an introduction. In: Libscher, A., Franz, G. (Eds.), Reviews in Mineralogy and Geochemistry, vol. 56. Mineralogical Society of America and Geochemical Society, pp. 1–80. Franzson H., 2004. Reykjanes high-temperature geothermal system. Geological and geothermal model. Iceland GeoSurvey report I´SOR-2004/012 (in Icelandic). Franzson H., Thordarson S., Bjo¨rnsson G., Gudlaugsson S.Th., Richter B., Fridleifsson G.O´ ., Tho´rhallsson S., 2002. Reykjanes high-temperature field SW-Iceland. Geology and hydrothermal alteration of well RN-10. In: Proceedings of the 27th Workshop Geothermal Reservoir Engineering, Stanford University. Gerlach, T.M., McGee, K.A., Elias, T., Sutton, A.J., Doukas, M.P., 2002. Carbon dioxide emission rate of Kilauea Volcano: implications for primary magma and the summit reservoir. J. Geophys. Res. 107 B9, 2189. Gı´slason, S.R., 2000. Carbon dioxide from Eyjafjallajo¨ kull and chemical composition of spring water and river water in the Eyjafjalljo¨kull – My´rdalsjo¨kull region. Science Institute, University of Iceland, Report RH-06-2000. Granieri, D., Chiodini, G., Marzocchi, W., Avino, R., 2003. Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): influence of environmental and volcanic parameters. Earth Plan. Sci. Lett. 212, 167–179. Gudmundsdo´ ttir, A.L., 1988. Natural heat flow through surface in geothermal areas in the Nesjavellir area. University of Iceland 4th year honors thesis. Herna´ndez, P.A., Notsu, K., Salazar, J.M., Mori, T., Natale, G., Okada, H., Virgili, G., Shimoike, Y., Sato, M., Pe´rez, N.M., 2001a. Carbon dioxide degassing by advective flow from Usu volcano, Japan. Science 292, 83–86. Herna´ndez, P.A., Perez, N.M., Salazar, J.M., Nakai, S., Notsu, K., Wakita, H., 1998. Diffuse emissions of carbon dioxide, methane, and helium-3 from Teide volcano, Tenerife, Canary Islands. Geophys. Res. Lett. 25, 3311–3314. Herna´ndez, P.A., Salazar, J.M., Shimoike, Y., Mori, T., Notsu, K., Pe´rez, N.M., 2001b. Diffuse emissios of CO2 from Miyakejima volcano, Japan. Chem. Geol. 177, 175–185. Jakobsson, S.P., Jo´nsson, J., Shido, F., 1978. Petrology of the Western Reykjanes Peninsula, Iceland. J. Petrol. 19, 669–705. Johnson, J.W., Oelkers, E.H., Helgeson, H.C., 1992. SUPCRT92 – a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 bar to 5000 bar and 0 C to 1000 C. Comput. Geosci. 18, 899–947. Jo´nsson, J., 1968. Changes in the geothermal area at Reykjanes in 1967. National Energy Authority Report 10421 OST 5 (in Icelandic). Jo´nsson, J., 1983. Historic eruptions on the Reykjanes Peninsula. Na´ttu´rufraedingurinn 52, 127–139 (in Icelandic). Karlsdo´ ttir, R., 2005. TEM-measurements at Reykjanes 2004. Iceland GeoSurvey Report I´SOR-2005/002 (in Icelandic). Kerrick, D.M., 2001. Present and past nonanthropogenic CO2 degassing from the solid Earth. Rev. Geophys. 39, 564– 585. Lewicki, J.L., Connor, C., St-Amand, K., Stix, J., Spinner, W., 2003. Self-potential, soil CO2 flux and temperature on Masaya volcano, Nicaragua. Geophys. Res. Lett. 30, 1817. Lonker, S.W., Franzson, H., Kristmannsdo´ ttir, H., 1993. Mineral– fluid interactions in the Reykjanes and Svartsengi geothermal systems, Iceland. Am. J. Sci. 293, 605–670. Marty, B., Tolstikhin, I.N., 1998. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol. 145, 233–248. Mo¨ rner, N.A., Etiope, G., 2002. Carbon degassing of the lithosphere. Global Planet. Change 33, 185–203. Nehring, N.L., D’Amore, F., 1984. Gas chemistry of the Cerro Prieto, Mexico. Geothermics 13, 75–89. Notsu, K., Sugiyama, K., Hosoe, M., Uemura, A., Shimoike, Y., Tsunomori, F., Sumino, H., Yamamoto, J., Mori, T., He´rnandez, P.A., 2005. Diffuse CO2 efflux from Iwojima volcano, Izu-Ogasawara arc, Japan. J. Volc. Geoth. Res. 139, 147–161. O´ skarsson, N., 1996. Carbon dioxide from large volcanic eruptions. Short term effects. In: Biological Society of Iceland. The carbon budget of Iceland Conference, Reykjavı´k 22–23 November 1966. Prog. and Abstr., p. 17 (In Icelandic). Pa´lmason, G., Saemundsson, K., 1974. Iceland in relation to Mid-Atlantic Ridge. Ann. Rev. Earth Plan. Sci. 2, 25–50. Pa´lmason, G., Johnsen, G.V., Torfason, H., Sæmundsson, K, Ragnars, K, Haraldsson, G.I., Halldo´rsson, G.K., 1985. Assessment of geothermal energy in Iceland. Orkustofnun OS-85076/JHD-10. Saemundsson, K., Jo´hannesson, H., 2004. Geothermal map of Iceland. Iceland GeoSurvey and Icelandic Energy Authority. Saemundsson, K., Tho´rhallsson, S., Bjo¨rnsson, G., Karlsdo´ ttir, R., Franzson, H., 2004. Siting of drillholes RN-17 to RN-21 at Reykjanes. Iceland GeoSurvey report I´ SOR-04088 (in Icelandic). Salazar, J.M.L., Herna´ndes, P.A., Pe´rez, N.M., Melia´n, G., A ´ lvarez, J., Segura, F., Notsu, K., 2001. Diffuse emission of carbon dioxide from Cerro Negro volcano, Nicaragua, Central America. Geophys. Res. Lett. 28, 4275–4278. Sapper, K., 1908. On some Icelandic volcanic fissures and crater rows. Neu. Jahrb. Min. Geol. Pala¨ontol., 26 (in German). Schmidt, E., Grigull, U., 1979. Properties of Water and Steam in SI-units: 0–800 C, 0–1000 bar. Springer-Verlag, Berlin Heidelberg, R. Oldebourg, Mu¨nchen. Sigurgeirsson, M.A´ ., 1995. The younger Stampar eruption at Reykjanes. Na´ttu´rufraedingurinn 64, 211–230 (in Icelandic). Sigurgeirsson, M.A´ ., 2004. A chapter in the eruption history of Reykjanes: eruption episode two thousand years ago. Na´ttu´rufraedingurinn 72, 21–28 (in Icelandic). Sinclair, A.J., 1974. Selection of threshold values in geochemical data using probability graphs. J. Geochem. Explor. 3, 129– 149. Sorey, M.L., Colvard, E.M., 1994. Measurements of heat and mass flow from thermal areas in Lassen Volcanic National Park, California, 1984–1993. U.S.G.S. Water Resour. Invest. Rep., 94–4180-A. Stefa´nsson, A., Arno´ rsson, S., 2002. Gas pressures and redox reactions in geothermal fluids in Iceland. Chem. Geol. 190, 251–271. Sutton, O.G., 1953. Micrometeorology. McGraw-Hill, New York. Sveinbjo¨rnsdo´ ttir, A.E., 1991. composition of geothermal minerals from saline and dilute fluids – Krafla and Reykjanes, Iceland. Lithos 27, 301–315. Thorkelsson, Th., 1928. On thermal activity in Reykjanes. Rit Vı´sindafe´lags I´slendinga, 3. Werner, C., Brantley, S., 2003. CO2 emissions from the Yellowstone volcanic system. Geochem. Geophys. Geosyst. 4, 1061. Werner, C., Brantley, S.L., Boomer, K., 2000. CO2 emissions related to the Yellowstone volcanic system 2. Statistical sampling, total degassing, and transport mechnanisms. J. Geophys. Res. 105, 10831–10846. Werner, C., Christenson, B.J., Scott, K., Britten, K., Kilgour, G., 2004. Monitoring CO2 emissions at White Island volcano, New Zealand: evidence for total decrease in magmatic mass and heat output. In: Wanty R.B., Seal II R.R. (Eds.), Proceedings of the 11th International Symposium Water– Rock Interaction, WRI-11, pp. 223–226. Wolfe, C.J., Bjarnason, I.Th., VanDecar, J.C., Solomon, S.C., 1997. Seismic structure of the Iceland mantle plume. Nature 385, 245–247. Zhao, Ping, A ´ rmannsson, H., 1996. Gas geothermometry in selected Icelandic geothermal fields with comparative examples from Kenya. Geothermics 25, 307–347. Th. Fridriksson et al. / Applied Geochemistry 21 (2006) 1551–1569 1569 http://hdl.handle.net/2122/2680 doi:10.1016/j.apgeochem.2006.04.006 restricted geothermal emissions 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases article 2006 ftingv https://doi.org/10.1016/j.apgeochem.2006.04.006 https://doi.org/10.1029/2002JB002165 2022-07-29T06:04:32Z Carbon dioxide emissions and heat flow through soil, steam vents and fractures, and steam heated mud pools were determined in the Reykjanes geothermal area, SW Iceland. Soil diffuse degassing of CO2 was quantified by soil flux measurements on a 600 m by 375 m rectangular grid using a portable closed chamber soil flux meter and the resulting data were analyzed by both a graphical statistical method and sequential Gaussian simulations. The soil temperature was measured in each node of the grid and used to evaluate the heat flow. The heat flow data were also analyzed by sequential Gaussian simulations. Heat flow from steam vents and fractures was determined by quantifying the amount of steam emitted from the vents by direct measurements of steam flow rate. The heat loss from the steam heated mud pools was determined by quantifying the rate of heat loss from the pools by evaporation, convection, and radiation. The steam flow rate into the pools was calculated from the observed heat loss from the pools, assuming that steam flow was the only mechanism of heat transport into the pool. The CO2 emissions from the steam vents and mud pools were determined by multiplying the steam flow rate from the respective sources by the representative CO2 concentration of steam in the Reykjanes area. The observed rates of CO2 emissions through soil, steam vents, and steam heated mud pools amounted to 13.5 ± 1.7, 0.23 ± 0.05, and 0.13 ± 0.03 tons per day, respectively. The heat flow through soil, steam vents, and mud pools was 16.9 ± 1.4, 2.2 ± 0.4, and 1.2 ± 0.1 MW, respectively. Heat loss from the geothermal reservoir, inferred from the CO2 emissions through the soil amounts to 130 ± 16 MW of thermal energy. The discrepancy between the observed heat loss and the heat loss inferred from the CO2 emissions is attributed to steam condensation in the subsurface due to interactions with cold ground water. These results demonstrate that soil diffuse degassing can be a more reliable proxy for heat loss from geothermal systems than soil ... Article in Journal/Newspaper Iceland Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Reykjanes ENVELOPE(-22.250,-22.250,65.467,65.467) Applied Geochemistry 21 9 1551 1569