Ambient noise levels in north central Italy

The characteristics of background seismic noise in north central Italy have been investigated by means of velocity power spectral analysis within the frequency range 0.1–15 Hz. The method proposed by McNamara and Buland (2004) has been applied to estimate the probability density function (PDF) of po...

Full description

Bibliographic Details
Published in:Geochemistry, Geophysics, Geosystems
Main Authors: Marzorati, S., Bindi, D.
Other Authors: Marzorati, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia, Bindi, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia
Format: Article in Journal/Newspaper
Language:English
Published: Agu 2006
Subjects:
Online Access:http://hdl.handle.net/2122/2530
https://doi.org/10.1029/2006GC001256
id ftingv:oai:www.earth-prints.org:2122/2530
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic seismic noise
probability density function
microseisms
cultural noise
north Italy
04. Solid Earth::04.06. Seismology::04.06.06. Surveys
measurements
and monitoring
spellingShingle seismic noise
probability density function
microseisms
cultural noise
north Italy
04. Solid Earth::04.06. Seismology::04.06.06. Surveys
measurements
and monitoring
Marzorati, S.
Bindi, D.
Ambient noise levels in north central Italy
topic_facet seismic noise
probability density function
microseisms
cultural noise
north Italy
04. Solid Earth::04.06. Seismology::04.06.06. Surveys
measurements
and monitoring
description The characteristics of background seismic noise in north central Italy have been investigated by means of velocity power spectral analysis within the frequency range 0.1–15 Hz. The method proposed by McNamara and Buland (2004) has been applied to estimate the probability density function (PDF) of power spectra computed for ten different stations. Since the target region is the most industrialized area of Italy, a large variability among the power spectra for different sites is observed in the frequency range 1– 15 Hz, with the noise levels at two stations exceeding the New High Noise Model (NHNM) of Peterson (1993). The 95th percentile of the PDF varies from 165 to 125 dB (relative to (m/s)2/Hz). This variability could significantly affect the detection capabilities of a network installed for recording the small to moderate size seismicity occurring in north central Italy. We also observed that the dispersion of the powers, estimated at each site as the difference between the 95th and the 5th percentiles, shows a positive trend with frequency that can be ascribed to the diurnal variation of the background noise levels. In the frequency range 0.1–1 Hz, the dominant feature is the double frequency (DF) peak of microseisms generated by oceanic storms. At one of the considered stations, the seasonal variability of the maximum amplitude of the DF peak has been observed in the period from April 2004 to December 2005. Considering the barometric maps provided by the UK Meteorological Office, we observed that the strongest powers in the range 0.10–0.25 Hz occur when intense storms are present over the North Atlantic Ocean, whereas the measurements of the height, frequency, and azimuth of the sea waves at two buoys of the Rete Ondametrica Italiana deployed in the Adriatic and Tyrrhenian seas suggest that the DF microseisms in the frequency range 0.25–0.50 Hz are generated by storms over the Mediterranean Sea. Finally, the analyzed region is characterized by two large-scale geologic features, namely, the Po Plain and the ...
author2 Marzorati, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia
Bindi, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia
format Article in Journal/Newspaper
author Marzorati, S.
Bindi, D.
author_facet Marzorati, S.
Bindi, D.
author_sort Marzorati, S.
title Ambient noise levels in north central Italy
title_short Ambient noise levels in north central Italy
title_full Ambient noise levels in north central Italy
title_fullStr Ambient noise levels in north central Italy
title_full_unstemmed Ambient noise levels in north central Italy
title_sort ambient noise levels in north central italy
publisher Agu
publishDate 2006
url http://hdl.handle.net/2122/2530
https://doi.org/10.1029/2006GC001256
genre North Atlantic
genre_facet North Atlantic
op_relation Geochem. Geophys. Geosyst.
9 / 7 (2006)
Amorosi, A., M. Farina, P. Severi, D. Preti, L. Caporale, and G. Di Dio (1996), Genetically related alluvial deposits across active fault zones: An example of alluvial fan-terrace correlation from the upper Quaternary of the southern Po Basin, Italy, Sediment. Geol., 102, 274–295. Bendat, J. S., and A. G. Piersol (1971), Random Data: Analysis and Measurement Procedures, 407 pp., Wiley-Interscience, Hoboken, N. J. Bordoni, P., F. Marra, M. Moro, L. Luzi, and L. Margheriti (2003), Geological class map, in Terremoti Probabili in Italia tra l’Anno 2000 e il 2030: Elementi per la Definizione di Priorita` Degli Interventi di Riduzione del Rischio Sismico, Annex 1, Task 3.2, pp. 3–4, GNDT Proj., Rome. Bormann, P. (2002), Seismic signals and noise, in IASPEI New Manual of Seismological Observatory Practice, vol. 1, edited by P. Bormann, chap. 4, pp. 1–33, GeoForschungs- Zentrum, Potsdam, Germany. Bormann, P., K. Wylegalla, and K. Klinge (1997), Analysis of broadband seismic noise at the German Regional Seismic Network and search for improved alternative station sites, J. Seismol., 1, 357–381. Bromirski, P. D., and F. K. Duennebier (2002), The near-coastal microseism spectrum: Spatial and temporal wave climate relationships, J. Geophys. Res., 107(B8), 2166, doi:10.1029/ 2001JB000265. Bromirski, P. D., F. K. Duennebier, and R. A. Stephen (2005), Mid-ocean microseisms, Geochem. Geophys. Geosyst., 6, Q04009, doi:10.1029/2004GC000768. Brune, J. N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 4997– 5009. Carminati, E., and G. B. Siletto (1997), The effects of brittleplastic transitions in basement-involved foreland belts: The Central Southern Alps case (N Italy), Tectonophysics, 280, 107–123. Cassano, E., L. Anelli, R. Fichera, and V. Cappelli (1986), Pianura Padana—Interpretazione integrata di dati geofisici e geologici, paper presented at 73rd Congresso Societa` Geologica Italiana, Roma, 29 Sept. to 4 Oct. Cocco, M., F. Ardizzoni, R. M. Azzara, L. Dall’Olio, A. Delladio, M. Di Bona, L. Malagnini, L. Margheriti, and A. Nardi (2001), Broadband waveforms and site effects at a borehole seismometer in the Po alluvial basin (Italy), Ann. Geofis., 44(1), 137–154. Cooley, J. W., and J. W. Tukey (1965), An algorithm for machine calculation of complex Fourier series, Math. Comput., 19, 297–301. Correig, A. M., and M. Urquizu´ (2002), Some dynamical characteristics of microseism time-series, Geophys. J. Int., 149, 589–598. European Committee for Standardization (2002), Design provisions for earthquake resistance of structures: Seismic actions and general requirements of structures (draft), CEN/TC 250, ENV 1998-1-1, EUROCODE 8, Brussels, May. Friedrich, A., F. Kru¨ger, and K. Klinge (1998), Ocean generated microseismic noise located with the Gra¨fenberg array, J. Seismol., 2, 47–64. Frigo, M., and S. G. Johnson (1998), FFTW: An adaptive software architecture for the FFT, in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech And Signal Processing, vol. 3, pp. 1381–1384, Int. Electron. and Electr. Eng., New York. Hasselmann, K. (1963), A statistical analysis of the generation of microseisms, Rev. Geophys., 1, 177–210. Herbers, T. H. C., and R. T. Guza (1994), Wind-wave nonlinearity observed at the seafloor, Part I: Forced-wave energy, J. Phys. Oceanogr., 21(12), 1740–1761. Kibblewhite, A. C., and K. C. Ewans (1985), Wave-wave interactions, microseisms, and infrasonic ambient noise in the ocean, J. Acoust. Soc. Am., 78, 981–994. Kulhanek, O. (1990), Anatomy of Seismograms: Development in Solid Earth Geophysics, 178 pp., Elsevier, New York. Lay, T., and T. C. Wallace (1995), Modern Global Seismology, 521 pp., Elsevier, New York. Longuet-Higgins, M. S. (1950), A theory of the origin of microseisms, Philos. Trans. R. Soc. London, Ser. A, 243, 2–36. Milano, P. F., G. Pennacchioni, and M. I. Spalla (1988), Alpine and pre-Alpine tectonics in the Central Orobic Alps (Southern Alps), Eclogae Geol. Helv., 81, 273–293. McNamara, D. E., and R. P. Buland (2004), Ambient noise levels in the continental United States, Bull. Seismol. Soc. Am., 94(4), 1517–1527. Okada, H. (2003), The Microtremor Survey Method, Geophys. Monogr. Ser., vol. 12, edited by D. V. Fitterman, and M. W. Asten, 135 pp., Soc. of Explor. Geophys., Tulsa, Okla. Parolai, S., P. Bormann, and C. Milkereit (2001), Assessment of the natural frequency of the sedimentary cover in the Cologne area (Germany) using noise measurements, J. Earthquake Eng., 5(4), 541–564. Peterson, J. (1993), Observations and modeling of background seismic noise, U.S. Geol. Surv. Open File Rep., 93-322. Pieri, M., and G. Groppi (1981), Subsurface geological structure of the Po Plain, in Progetto Finalizzato Geodinamica, pp. 1–11, Cons. Naz. delle Ric., Rome. Rosenbaum, G., and G. S. Lister (2002), Reconstruction of the evolution of the Alpine-Himalayan orogen—An introduction, J. Virtual Explor., 8, 1–2. Siletto, G. B., M. I. Spalla, A. Tunesi, J. M. Lardeaux, and A. Colombo (1993), Pre-Alpine structural and metamorphic histories in the Orobic Southern Alps, Italy, in Pre-Mesozoic Geology in the Alps, edited by J. F. Von Raumer and F. Neubauer, pp. 585–598, Springer, New York. Stephen, R. A., F. N. Spiess, J. A. Collins, J. A. Hildebrand, J. A. Orcutt, K. R. Peal, F. L. Vernon, and F. B. Wooding (2003), Ocean Seismic Network Pilot Experiment, Geochem. Geophys. Geosyst., 4(10) , 1092, doi:10.1029/ 2002GC000485. Stutzmann, E., G. Roult, and L. Astiz (2000), GEOSCOPE station noise levels, Bull. Seismol. Soc. Am., 90(3), 690– 701. Trnkoczy, A., P. Bormann, W. Hanka, L. G. Holcomb, and R. L. Nigbor (2002), Site selection, preparation and installation of seismic station, in IASPEI New Manual of Seismological Observatory Practice, vol. 1, edited by P. Bormann, chap. 7, pp. 1–106, GeoForschungsZentrum, Potsdam.
http://hdl.handle.net/2122/2530
doi:10.1029/2006GC001256
op_rights restricted
op_doi https://doi.org/10.1029/2006GC001256
https://doi.org/10.1029/2004GC000768
container_title Geochemistry, Geophysics, Geosystems
container_volume 7
container_issue 9
container_start_page n/a
op_container_end_page n/a
_version_ 1766136373486551040
spelling ftingv:oai:www.earth-prints.org:2122/2530 2023-05-15T17:36:47+02:00 Ambient noise levels in north central Italy Marzorati, S. Bindi, D. Marzorati, S.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia Bindi, D.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Milano-Pavia, Milano, Italia Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Milano, Milano, Italia 2006 http://hdl.handle.net/2122/2530 https://doi.org/10.1029/2006GC001256 en eng Agu Geochem. Geophys. Geosyst. 9 / 7 (2006) Amorosi, A., M. Farina, P. Severi, D. Preti, L. Caporale, and G. Di Dio (1996), Genetically related alluvial deposits across active fault zones: An example of alluvial fan-terrace correlation from the upper Quaternary of the southern Po Basin, Italy, Sediment. Geol., 102, 274–295. Bendat, J. S., and A. G. Piersol (1971), Random Data: Analysis and Measurement Procedures, 407 pp., Wiley-Interscience, Hoboken, N. J. Bordoni, P., F. Marra, M. Moro, L. Luzi, and L. Margheriti (2003), Geological class map, in Terremoti Probabili in Italia tra l’Anno 2000 e il 2030: Elementi per la Definizione di Priorita` Degli Interventi di Riduzione del Rischio Sismico, Annex 1, Task 3.2, pp. 3–4, GNDT Proj., Rome. Bormann, P. (2002), Seismic signals and noise, in IASPEI New Manual of Seismological Observatory Practice, vol. 1, edited by P. Bormann, chap. 4, pp. 1–33, GeoForschungs- Zentrum, Potsdam, Germany. Bormann, P., K. Wylegalla, and K. Klinge (1997), Analysis of broadband seismic noise at the German Regional Seismic Network and search for improved alternative station sites, J. Seismol., 1, 357–381. Bromirski, P. D., and F. K. Duennebier (2002), The near-coastal microseism spectrum: Spatial and temporal wave climate relationships, J. Geophys. Res., 107(B8), 2166, doi:10.1029/ 2001JB000265. Bromirski, P. D., F. K. Duennebier, and R. A. Stephen (2005), Mid-ocean microseisms, Geochem. Geophys. Geosyst., 6, Q04009, doi:10.1029/2004GC000768. Brune, J. N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 4997– 5009. Carminati, E., and G. B. Siletto (1997), The effects of brittleplastic transitions in basement-involved foreland belts: The Central Southern Alps case (N Italy), Tectonophysics, 280, 107–123. Cassano, E., L. Anelli, R. Fichera, and V. Cappelli (1986), Pianura Padana—Interpretazione integrata di dati geofisici e geologici, paper presented at 73rd Congresso Societa` Geologica Italiana, Roma, 29 Sept. to 4 Oct. Cocco, M., F. Ardizzoni, R. M. Azzara, L. Dall’Olio, A. Delladio, M. Di Bona, L. Malagnini, L. Margheriti, and A. Nardi (2001), Broadband waveforms and site effects at a borehole seismometer in the Po alluvial basin (Italy), Ann. Geofis., 44(1), 137–154. Cooley, J. W., and J. W. Tukey (1965), An algorithm for machine calculation of complex Fourier series, Math. Comput., 19, 297–301. Correig, A. M., and M. Urquizu´ (2002), Some dynamical characteristics of microseism time-series, Geophys. J. Int., 149, 589–598. European Committee for Standardization (2002), Design provisions for earthquake resistance of structures: Seismic actions and general requirements of structures (draft), CEN/TC 250, ENV 1998-1-1, EUROCODE 8, Brussels, May. Friedrich, A., F. Kru¨ger, and K. Klinge (1998), Ocean generated microseismic noise located with the Gra¨fenberg array, J. Seismol., 2, 47–64. Frigo, M., and S. G. Johnson (1998), FFTW: An adaptive software architecture for the FFT, in Proceedings of the 1998 IEEE International Conference on Acoustics, Speech And Signal Processing, vol. 3, pp. 1381–1384, Int. Electron. and Electr. Eng., New York. Hasselmann, K. (1963), A statistical analysis of the generation of microseisms, Rev. Geophys., 1, 177–210. Herbers, T. H. C., and R. T. Guza (1994), Wind-wave nonlinearity observed at the seafloor, Part I: Forced-wave energy, J. Phys. Oceanogr., 21(12), 1740–1761. Kibblewhite, A. C., and K. C. Ewans (1985), Wave-wave interactions, microseisms, and infrasonic ambient noise in the ocean, J. Acoust. Soc. Am., 78, 981–994. Kulhanek, O. (1990), Anatomy of Seismograms: Development in Solid Earth Geophysics, 178 pp., Elsevier, New York. Lay, T., and T. C. Wallace (1995), Modern Global Seismology, 521 pp., Elsevier, New York. Longuet-Higgins, M. S. (1950), A theory of the origin of microseisms, Philos. Trans. R. Soc. London, Ser. A, 243, 2–36. Milano, P. F., G. Pennacchioni, and M. I. Spalla (1988), Alpine and pre-Alpine tectonics in the Central Orobic Alps (Southern Alps), Eclogae Geol. Helv., 81, 273–293. McNamara, D. E., and R. P. Buland (2004), Ambient noise levels in the continental United States, Bull. Seismol. Soc. Am., 94(4), 1517–1527. Okada, H. (2003), The Microtremor Survey Method, Geophys. Monogr. Ser., vol. 12, edited by D. V. Fitterman, and M. W. Asten, 135 pp., Soc. of Explor. Geophys., Tulsa, Okla. Parolai, S., P. Bormann, and C. Milkereit (2001), Assessment of the natural frequency of the sedimentary cover in the Cologne area (Germany) using noise measurements, J. Earthquake Eng., 5(4), 541–564. Peterson, J. (1993), Observations and modeling of background seismic noise, U.S. Geol. Surv. Open File Rep., 93-322. Pieri, M., and G. Groppi (1981), Subsurface geological structure of the Po Plain, in Progetto Finalizzato Geodinamica, pp. 1–11, Cons. Naz. delle Ric., Rome. Rosenbaum, G., and G. S. Lister (2002), Reconstruction of the evolution of the Alpine-Himalayan orogen—An introduction, J. Virtual Explor., 8, 1–2. Siletto, G. B., M. I. Spalla, A. Tunesi, J. M. Lardeaux, and A. Colombo (1993), Pre-Alpine structural and metamorphic histories in the Orobic Southern Alps, Italy, in Pre-Mesozoic Geology in the Alps, edited by J. F. Von Raumer and F. Neubauer, pp. 585–598, Springer, New York. Stephen, R. A., F. N. Spiess, J. A. Collins, J. A. Hildebrand, J. A. Orcutt, K. R. Peal, F. L. Vernon, and F. B. Wooding (2003), Ocean Seismic Network Pilot Experiment, Geochem. Geophys. Geosyst., 4(10) , 1092, doi:10.1029/ 2002GC000485. Stutzmann, E., G. Roult, and L. Astiz (2000), GEOSCOPE station noise levels, Bull. Seismol. Soc. Am., 90(3), 690– 701. Trnkoczy, A., P. Bormann, W. Hanka, L. G. Holcomb, and R. L. Nigbor (2002), Site selection, preparation and installation of seismic station, in IASPEI New Manual of Seismological Observatory Practice, vol. 1, edited by P. Bormann, chap. 7, pp. 1–106, GeoForschungsZentrum, Potsdam. http://hdl.handle.net/2122/2530 doi:10.1029/2006GC001256 restricted seismic noise probability density function microseisms cultural noise north Italy 04. Solid Earth::04.06. Seismology::04.06.06. Surveys measurements and monitoring article 2006 ftingv https://doi.org/10.1029/2006GC001256 https://doi.org/10.1029/2004GC000768 2022-07-29T06:04:30Z The characteristics of background seismic noise in north central Italy have been investigated by means of velocity power spectral analysis within the frequency range 0.1–15 Hz. The method proposed by McNamara and Buland (2004) has been applied to estimate the probability density function (PDF) of power spectra computed for ten different stations. Since the target region is the most industrialized area of Italy, a large variability among the power spectra for different sites is observed in the frequency range 1– 15 Hz, with the noise levels at two stations exceeding the New High Noise Model (NHNM) of Peterson (1993). The 95th percentile of the PDF varies from 165 to 125 dB (relative to (m/s)2/Hz). This variability could significantly affect the detection capabilities of a network installed for recording the small to moderate size seismicity occurring in north central Italy. We also observed that the dispersion of the powers, estimated at each site as the difference between the 95th and the 5th percentiles, shows a positive trend with frequency that can be ascribed to the diurnal variation of the background noise levels. In the frequency range 0.1–1 Hz, the dominant feature is the double frequency (DF) peak of microseisms generated by oceanic storms. At one of the considered stations, the seasonal variability of the maximum amplitude of the DF peak has been observed in the period from April 2004 to December 2005. Considering the barometric maps provided by the UK Meteorological Office, we observed that the strongest powers in the range 0.10–0.25 Hz occur when intense storms are present over the North Atlantic Ocean, whereas the measurements of the height, frequency, and azimuth of the sea waves at two buoys of the Rete Ondametrica Italiana deployed in the Adriatic and Tyrrhenian seas suggest that the DF microseisms in the frequency range 0.25–0.50 Hz are generated by storms over the Mediterranean Sea. Finally, the analyzed region is characterized by two large-scale geologic features, namely, the Po Plain and the ... Article in Journal/Newspaper North Atlantic Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Geochemistry, Geophysics, Geosystems 7 9 n/a n/a