Onset and Role of the Antarctic Circumpolar Current.

The major role for the ACC, as inferred in the past, is to have caused or stabilised full Antarctic glaciation. This role has since been questioned, and other hypothesised roles are relatively minor. Using a “smoking gun” assumption, determination of the time of onset of an ACC will resolve uncertai...

Full description

Bibliographic Details
Published in:Paleoceanography
Main Authors: Barker, P., Filippelli, G., Florindo, F., Martin, E., Scher, H.
Other Authors: Barker, P.; Church St., Great Gransden, SG19 3AF, UK, Filippelli, G.; Dept of Geology, Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianopolis, IN 46202-5132 USA, Florindo, F.; Istituto Nazionale di Geofisica e Vulcanologia. Via di Vigna Murata 605, 00143 Rome, Italy, Martin, E.; Dept of Geological Sciences, Univ. of Florida, Gainesville, FL 32611-2120, USA, Scher, H.; Dept of Earth & Environmental Sciences, Univ. of Rochester, Rochester NY 14611, USA, Church St., Great Gransden, SG19 3AF, UK, Dept of Geology, Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianopolis, IN 46202-5132 USA, Istituto Nazionale di Geofisica e Vulcanologia. Via di Vigna Murata 605, 00143 Rome, Italy, Dept of Geological Sciences, Univ. of Florida, Gainesville, FL 32611-2120, USA, Dept of Earth & Environmental Sciences, Univ. of Rochester, Rochester NY 14611, USA
Format: Manuscript
Language:English
Published: 2006
Subjects:
Online Access:http://hdl.handle.net/2122/2184
id ftingv:oai:www.earth-prints.org:2122/2184
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Antarctic
03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
spellingShingle Antarctic
03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
Barker, P.
Filippelli, G.
Florindo, F.
Martin, E.
Scher, H.
Onset and Role of the Antarctic Circumpolar Current.
topic_facet Antarctic
03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
description The major role for the ACC, as inferred in the past, is to have caused or stabilised full Antarctic glaciation. This role has since been questioned, and other hypothesised roles are relatively minor. Using a “smoking gun” assumption, determination of the time of onset of an ACC will resolve uncertainties in its role, and constrain the importance of ocean circulation to climate. To this end, we summarise all published estimates of ACC onset. The time of onset, of shallow circulation or deep, is extremely uncertain, whether based on tectonic studies or the interpretation of changes in the sediment record. Two potential final barriers to circumpolar flow have been identified; south of Tasmania and south of South America. The former is wellconstrained by tectonics and marine geology to before 32 Ma for a deep gap, with a shallow gap in place by 35.5 Ma at the latest. These ages fit nicely with the onset of full Antarctic glaciation at 33-34 Ma, although some workers deny the causality. Estimates of the time of opening of the latter range very widely, whether based on tectonics or sedimentary geology, from as recently as 6 Ma to as early as 41 Ma, with the gap depth uncertain also. Resolution of the tectonics-based uncertainties by additional survey being most probably both timeconsuming and inconclusive, and the geological estimates being open to alternative interpretations, we define an optimal strategy for additional sampling and measurement, designed to resolve the time of onset much more certainly, possibly also resolving between deep and shallow opening, and thereby constraining the ACC role. Sample sites would have to be close to likely final barriers, to avoid extraneous influence, and within modern zones of ACC influence, ideally would form a depth transect, and would have continuous, mixed terrigenous and biogenic sections. A wide range of carefully-selected parameters would be measured at each. Submitted open
author2 Barker, P.; Church St., Great Gransden, SG19 3AF, UK
Filippelli, G.; Dept of Geology, Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianopolis, IN 46202-5132 USA
Florindo, F.; Istituto Nazionale di Geofisica e Vulcanologia. Via di Vigna Murata 605, 00143 Rome, Italy
Martin, E.; Dept of Geological Sciences, Univ. of Florida, Gainesville, FL 32611-2120, USA
Scher, H.; Dept of Earth & Environmental Sciences, Univ. of Rochester, Rochester NY 14611, USA
Church St., Great Gransden, SG19 3AF, UK
Dept of Geology, Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianopolis, IN 46202-5132 USA
Istituto Nazionale di Geofisica e Vulcanologia. Via di Vigna Murata 605, 00143 Rome, Italy
Dept of Geological Sciences, Univ. of Florida, Gainesville, FL 32611-2120, USA
Dept of Earth & Environmental Sciences, Univ. of Rochester, Rochester NY 14611, USA
format Manuscript
author Barker, P.
Filippelli, G.
Florindo, F.
Martin, E.
Scher, H.
author_facet Barker, P.
Filippelli, G.
Florindo, F.
Martin, E.
Scher, H.
author_sort Barker, P.
title Onset and Role of the Antarctic Circumpolar Current.
title_short Onset and Role of the Antarctic Circumpolar Current.
title_full Onset and Role of the Antarctic Circumpolar Current.
title_fullStr Onset and Role of the Antarctic Circumpolar Current.
title_full_unstemmed Onset and Role of the Antarctic Circumpolar Current.
title_sort onset and role of the antarctic circumpolar current.
publishDate 2006
url http://hdl.handle.net/2122/2184
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_relation Barker, P.F., Burrell, J. 1977. The opening of Drake Passage. Mar. Geol., 25: 15-34. Barker P.F., Thomas E., 2004. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth Sci Rev. 66: 143-162. Barker, P.F., Barrett, P.J., Cooper, A.K., Huybrechts, K., 1999. Antarctic glacial history from numerical models and continental margin sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 150: 247-267. Coxall, H. K., Wilson, P. A., Palike, H., Lear, C. H. & Backman, J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433: 53–-57. De Conto, R., Pollard, D., 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421: 245-249. DeWit, M.J., 1977. The evolution of the Scotia Arc as a key to the reconstruction of southwest Gondwanaland. Tectonophysics, 37, 53-81. Diekmann, B., Kuhn, G., Gersonde, R., Mackensen, A., 2004. Middle Eocene to early Miocene environmental changes in the sub-Antarctic Southern Ocean: evidence from biogenic and terrigenous depositional patterns at ODP Site 1090. Global and Planetary Change 40, 295-313. Diester-Haass, L., Zahn, R., 1996. Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity. Geology, 24: 163-166. Diester-Haas, L., Zahn, R., 2001. Paleoproductivity increase at the Eocene-Oligocene climatic transition: ODP/DSDP Sites 763 and 592. Palaeogeography, Palaeoclimatology, Palaeoecology, 172: 153-170. Eagles, G., Livermore, R.A., 2002. Opening history of Powell Basin, Antarctic Peninsula. Mar. Geol. 185: 195-205. Eagles, G., Livermore, R.A., Fairhead, J.D., Morris, P., 2005. Tectonic evolution of the west Scotia Sea. J. geophys. Res., B02401 doi 10.1029/2004JB003154. Exon N.F., Kennett J.P., Malone M.J., Shipboard Scientific Party 2001 Proc. ODP Init. Repts. 189 [CD-ROM]. Available from: Ocean Drilling Program, College Station, TX 77845-9547, USA. Exon, N.F., Kennett, J.P., Malone, M.J., 2004. Leg 189 synthesis: Cretaceous-Holocene history of the Tasmanian Gateway. In Exon, N.F., Kennett, J.P., Malone, M.J., (Eds.), Proc. ODP, Sci. Results, 189: College Station, TX (Ocean Drilling Program), 1-38. Exon, N.F., Kennett, J.P., Malone, M.J., (Eds.), 2005. The Cenozoic Southern Ocean: tectonics, sedimentation and climate change between Australia and Antarctica AGU Geophys. Monogr. 151. Washington DC. Florindo, F., Roberts, A.P., 2005. Eocene-Oligocene magnetobiochronology of ODP Sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Geol. Soc. Amer. Bull. 117, 46-66. Gamboa, L.A.P., Buffler, R.L., Barker, P.F., 1983. Seismic stratigraphy of the Brasil Basin and Vema Gap, DSDP Leg 72. DSDP Init. Repts., 72: 481-498 Gille, S.T., 1994. Mean sea surface height of the Antarctic Circumpolar Current from Geosat data: method and application. J. geophys. Res., 99, 18255-18273. Hall, M., 1989. Velocity and transport structure of the Kuroshio Extension at 35oN, 152oE. J. geophys. Res., 94, 14445-14459. Heywood K.J., King B.A., 2002. Water masses and baroclinic transports in the South Atlantic and Southern oceans. J Mar. Res. 60: 639-676. Huber M., Brinkhuis H., Stickley C.E., Doos K., Sluijs A., Warnaar J., Schellenberg S.A., Williams G.L., 2004. Eocene circulation of the Southern Ocean: was Antarctica kept warm by subtropical waters? Paleoceanography 19. PA4026, doi:10.1029/2004PA001014 Huber, M., Sloan, L.C., Shellito, C., 2003. Early Paleogene oceans and climate: A fully coupled modelling approach using NCAR’s CCSM. Geol. Soc. Amer. Spec. Pap., 369. 25-47. Huybrechts, P., 1993. Glaciological modelling of the Late Cenozoic East Antarctic ice sheet: stability or dynamism. Geografiska Annaler, 75A: 221-238. Kennett, J.P., 1977. Cenozoic evolution of Antarctic glaciation, the Circum-Antarctic ocean, and their impact on global paleoceanography. J. geophys. Res., 82: 3843-3860. Kennett, J.P., Barker, P.F. 1990. Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: an ocean-drilling perspective. Proc. ODP, Sci. Results, 113: 937-960. Kennett, J.P., Houtz, R.E., et al., 1975. Initial Rep. Deep Sea Drill. Proj., 29. Krauss W., Fahrbach E., Aitsam A., Elken J., Koske P., 1987. The North Atlantic Current and its associated eddy field southeast of Flemish Cap. Deep-Sea Res., 34, 1163-1185. Latimer, J.C., Filippelli, G.M., 2002. Eocene to Miocene terrigenous imports and export production: geochemical evidence from ODP Leg 177, Site 1090. Palaeogeography, Palaeoclimatology, Palaeoecology, 182: 151-164. Lawver, L.A., Gahagan, L.M., 1998. Opening of Drake Passage and its impact on Cenozoic ocean circulation. In Crowley, T.J., Burke, K.C. (Eds.), Tectonic Boundary Conditions for Climate Reconstructions. Oxford (Oxford Univ. Press), 212-223. Lawver, L.A., Gahagan, L.M., 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 11-38. Lawver, L.A., Gahagan, L.M., Coffin, M.F., 1992. The development of paleoseaways around Antarctica. In: Kennett, J.P., Warnke, D.A., (Editors), The Antarctic Paleoenvironment: a Perspective on Global Change. Part I. AGU Ant. Res. Ser. 56, 7-30. Lazarus D., Caulet J-P., 1993. Cenozoic Southern Ocean reconstructions from sedimentologic, radiolarian and other microfossil data. In: Kennett J.P., Warnke D.A., (Editors), The Antarctic Paleoenvironment: A Perspective on Global Change. Part II. AGU Ant. Res. Ser. 60, 145-174. Livermore R., Eagles G., Morris P., Maldonado A., 2004. Shackleton Fracture Zone: no barrier to early circumpolar circulation. Geology 32: 797-800. Livermore, R.A., Nankivell, A., Eagles, G., Morris, P., 2005. Paleogene opening of Drake Passage. Earth planet. Sci. Lett. 236: 459-470. Nowlin, W.D., Jr., Klinck, J.M., 1986. The physics of the Antarctic Circumpolar Current. Rev. Geophys. 24, 469-491. Orsi, A.H., Whitworth, T., III, Nowlin, W.D., Jr., 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research I, 42, 641-473. Pagani, M., Arthur, M.A., Freeman, K.H., 2000. Variations in Miocene phytoplankton growth rates in the southwest Atlantic: Evidence for changes in ocean circulation. Paleoceanography 15: 486-496. Pfuhl, H.A., McCave, I.N., 2003. New insights into Southern Ocean climate history. UKIODP Newsletter 29, 27-29. Pudsey, C.J., Howe, J.A., 2002. Mixed biosiliceous-terrigenous sedimentation under the Antarctic Circumpolar Current, Scotia Sea. In: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugeres, J.-C., Viana, A.R., (Editors). Deep-Water Contourites: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics. Memoir 22, Geol. Soc. Lond., 325-336. Raymo ME, Ruddiman WF, 1992. Tectonic forcing of late Cenozoic climate. Nature 359: 117-122. Roberts AP, Bicknell SJ, Byatt, J, Bohaty SM, Florindo F, Harwood DM, 2003. Magnetostratigraphic calibration of Southern Ocean datums from the Eocene-Oligocene of Kerguelen Plateau (Ocean Drilling Program sites 744 and 748). Palaeogeography, Palaeoclimatology, Palaeoecology 198, 145-168 Scher, H.D., Martin, E.E., 2004. Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth planet. Sci. Lett., 228, 391-405. Stickley, C.E., Brinkhuis, H., Schellenberg, S., Sluijs, A., Roehl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., Williams, G.l., 2004. Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography 19, PA4027, doi:10/1029/2004PA001022 Toggweiler, J.R., Bjornsson, H., 2000. Drake Passage anf paleoclimate. J. Quat. Sci., 15: 319-328. Tripati, A., Backman, J., Elderfield, H., and Ferretti, P., 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436: 341-346. Webb, P-N., 1979. Paleogeographic evolution of the Ross sector during the Cenozoic. Mem. NIPR, Special Issue 13: 206-212. Wei, W., Wise, S.W., Jr., 1992. Selected Neogene calcareous nannofossil index taxa of the Southern Ocean: biochronology, biometrics and paleoceanography. In Wise, S.W., Jr., Schlich, R., et al., Proc. ODP, Sci. Results, 120: College Station, TX (Ocean Drilling Program), 523-537.
http://hdl.handle.net/2122/2184
op_rights open
container_title Paleoceanography
container_volume 19
container_issue 4
container_start_page n/a
op_container_end_page n/a
_version_ 1766255644153741312
spelling ftingv:oai:www.earth-prints.org:2122/2184 2023-05-15T13:51:39+02:00 Onset and Role of the Antarctic Circumpolar Current. Barker, P. Filippelli, G. Florindo, F. Martin, E. Scher, H. Barker, P.; Church St., Great Gransden, SG19 3AF, UK Filippelli, G.; Dept of Geology, Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianopolis, IN 46202-5132 USA Florindo, F.; Istituto Nazionale di Geofisica e Vulcanologia. Via di Vigna Murata 605, 00143 Rome, Italy Martin, E.; Dept of Geological Sciences, Univ. of Florida, Gainesville, FL 32611-2120, USA Scher, H.; Dept of Earth & Environmental Sciences, Univ. of Rochester, Rochester NY 14611, USA Church St., Great Gransden, SG19 3AF, UK Dept of Geology, Indiana Univ.-Purdue Univ. Indianapolis (IUPUI), Indianopolis, IN 46202-5132 USA Istituto Nazionale di Geofisica e Vulcanologia. Via di Vigna Murata 605, 00143 Rome, Italy Dept of Geological Sciences, Univ. of Florida, Gainesville, FL 32611-2120, USA Dept of Earth & Environmental Sciences, Univ. of Rochester, Rochester NY 14611, USA 2006 154998 bytes application/pdf http://hdl.handle.net/2122/2184 en eng Barker, P.F., Burrell, J. 1977. The opening of Drake Passage. Mar. Geol., 25: 15-34. Barker P.F., Thomas E., 2004. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth Sci Rev. 66: 143-162. Barker, P.F., Barrett, P.J., Cooper, A.K., Huybrechts, K., 1999. Antarctic glacial history from numerical models and continental margin sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 150: 247-267. Coxall, H. K., Wilson, P. A., Palike, H., Lear, C. H. & Backman, J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433: 53–-57. De Conto, R., Pollard, D., 2003. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature, 421: 245-249. DeWit, M.J., 1977. The evolution of the Scotia Arc as a key to the reconstruction of southwest Gondwanaland. Tectonophysics, 37, 53-81. Diekmann, B., Kuhn, G., Gersonde, R., Mackensen, A., 2004. Middle Eocene to early Miocene environmental changes in the sub-Antarctic Southern Ocean: evidence from biogenic and terrigenous depositional patterns at ODP Site 1090. Global and Planetary Change 40, 295-313. Diester-Haass, L., Zahn, R., 1996. Eocene-Oligocene transition in the Southern Ocean: History of water mass circulation and biological productivity. Geology, 24: 163-166. Diester-Haas, L., Zahn, R., 2001. Paleoproductivity increase at the Eocene-Oligocene climatic transition: ODP/DSDP Sites 763 and 592. Palaeogeography, Palaeoclimatology, Palaeoecology, 172: 153-170. Eagles, G., Livermore, R.A., 2002. Opening history of Powell Basin, Antarctic Peninsula. Mar. Geol. 185: 195-205. Eagles, G., Livermore, R.A., Fairhead, J.D., Morris, P., 2005. Tectonic evolution of the west Scotia Sea. J. geophys. Res., B02401 doi 10.1029/2004JB003154. Exon N.F., Kennett J.P., Malone M.J., Shipboard Scientific Party 2001 Proc. ODP Init. Repts. 189 [CD-ROM]. Available from: Ocean Drilling Program, College Station, TX 77845-9547, USA. Exon, N.F., Kennett, J.P., Malone, M.J., 2004. Leg 189 synthesis: Cretaceous-Holocene history of the Tasmanian Gateway. In Exon, N.F., Kennett, J.P., Malone, M.J., (Eds.), Proc. ODP, Sci. Results, 189: College Station, TX (Ocean Drilling Program), 1-38. Exon, N.F., Kennett, J.P., Malone, M.J., (Eds.), 2005. The Cenozoic Southern Ocean: tectonics, sedimentation and climate change between Australia and Antarctica AGU Geophys. Monogr. 151. Washington DC. Florindo, F., Roberts, A.P., 2005. Eocene-Oligocene magnetobiochronology of ODP Sites 689 and 690, Maud Rise, Weddell Sea, Antarctica. Geol. Soc. Amer. Bull. 117, 46-66. Gamboa, L.A.P., Buffler, R.L., Barker, P.F., 1983. Seismic stratigraphy of the Brasil Basin and Vema Gap, DSDP Leg 72. DSDP Init. Repts., 72: 481-498 Gille, S.T., 1994. Mean sea surface height of the Antarctic Circumpolar Current from Geosat data: method and application. J. geophys. Res., 99, 18255-18273. Hall, M., 1989. Velocity and transport structure of the Kuroshio Extension at 35oN, 152oE. J. geophys. Res., 94, 14445-14459. Heywood K.J., King B.A., 2002. Water masses and baroclinic transports in the South Atlantic and Southern oceans. J Mar. Res. 60: 639-676. Huber M., Brinkhuis H., Stickley C.E., Doos K., Sluijs A., Warnaar J., Schellenberg S.A., Williams G.L., 2004. Eocene circulation of the Southern Ocean: was Antarctica kept warm by subtropical waters? Paleoceanography 19. PA4026, doi:10.1029/2004PA001014 Huber, M., Sloan, L.C., Shellito, C., 2003. Early Paleogene oceans and climate: A fully coupled modelling approach using NCAR’s CCSM. Geol. Soc. Amer. Spec. Pap., 369. 25-47. Huybrechts, P., 1993. Glaciological modelling of the Late Cenozoic East Antarctic ice sheet: stability or dynamism. Geografiska Annaler, 75A: 221-238. Kennett, J.P., 1977. Cenozoic evolution of Antarctic glaciation, the Circum-Antarctic ocean, and their impact on global paleoceanography. J. geophys. Res., 82: 3843-3860. Kennett, J.P., Barker, P.F. 1990. Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: an ocean-drilling perspective. Proc. ODP, Sci. Results, 113: 937-960. Kennett, J.P., Houtz, R.E., et al., 1975. Initial Rep. Deep Sea Drill. Proj., 29. Krauss W., Fahrbach E., Aitsam A., Elken J., Koske P., 1987. The North Atlantic Current and its associated eddy field southeast of Flemish Cap. Deep-Sea Res., 34, 1163-1185. Latimer, J.C., Filippelli, G.M., 2002. Eocene to Miocene terrigenous imports and export production: geochemical evidence from ODP Leg 177, Site 1090. Palaeogeography, Palaeoclimatology, Palaeoecology, 182: 151-164. Lawver, L.A., Gahagan, L.M., 1998. Opening of Drake Passage and its impact on Cenozoic ocean circulation. In Crowley, T.J., Burke, K.C. (Eds.), Tectonic Boundary Conditions for Climate Reconstructions. Oxford (Oxford Univ. Press), 212-223. Lawver, L.A., Gahagan, L.M., 2003. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 11-38. Lawver, L.A., Gahagan, L.M., Coffin, M.F., 1992. The development of paleoseaways around Antarctica. In: Kennett, J.P., Warnke, D.A., (Editors), The Antarctic Paleoenvironment: a Perspective on Global Change. Part I. AGU Ant. Res. Ser. 56, 7-30. Lazarus D., Caulet J-P., 1993. Cenozoic Southern Ocean reconstructions from sedimentologic, radiolarian and other microfossil data. In: Kennett J.P., Warnke D.A., (Editors), The Antarctic Paleoenvironment: A Perspective on Global Change. Part II. AGU Ant. Res. Ser. 60, 145-174. Livermore R., Eagles G., Morris P., Maldonado A., 2004. Shackleton Fracture Zone: no barrier to early circumpolar circulation. Geology 32: 797-800. Livermore, R.A., Nankivell, A., Eagles, G., Morris, P., 2005. Paleogene opening of Drake Passage. Earth planet. Sci. Lett. 236: 459-470. Nowlin, W.D., Jr., Klinck, J.M., 1986. The physics of the Antarctic Circumpolar Current. Rev. Geophys. 24, 469-491. Orsi, A.H., Whitworth, T., III, Nowlin, W.D., Jr., 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research I, 42, 641-473. Pagani, M., Arthur, M.A., Freeman, K.H., 2000. Variations in Miocene phytoplankton growth rates in the southwest Atlantic: Evidence for changes in ocean circulation. Paleoceanography 15: 486-496. Pfuhl, H.A., McCave, I.N., 2003. New insights into Southern Ocean climate history. UKIODP Newsletter 29, 27-29. Pudsey, C.J., Howe, J.A., 2002. Mixed biosiliceous-terrigenous sedimentation under the Antarctic Circumpolar Current, Scotia Sea. In: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugeres, J.-C., Viana, A.R., (Editors). Deep-Water Contourites: Modern Drifts and Ancient Series, Seismic and Sedimentary Characteristics. Memoir 22, Geol. Soc. Lond., 325-336. Raymo ME, Ruddiman WF, 1992. Tectonic forcing of late Cenozoic climate. Nature 359: 117-122. Roberts AP, Bicknell SJ, Byatt, J, Bohaty SM, Florindo F, Harwood DM, 2003. Magnetostratigraphic calibration of Southern Ocean datums from the Eocene-Oligocene of Kerguelen Plateau (Ocean Drilling Program sites 744 and 748). Palaeogeography, Palaeoclimatology, Palaeoecology 198, 145-168 Scher, H.D., Martin, E.E., 2004. Circulation in the Southern Ocean during the Paleogene inferred from neodymium isotopes. Earth planet. Sci. Lett., 228, 391-405. Stickley, C.E., Brinkhuis, H., Schellenberg, S., Sluijs, A., Roehl, U., Fuller, M., Grauert, M., Huber, M., Warnaar, J., Williams, G.l., 2004. Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography 19, PA4027, doi:10/1029/2004PA001022 Toggweiler, J.R., Bjornsson, H., 2000. Drake Passage anf paleoclimate. J. Quat. Sci., 15: 319-328. Tripati, A., Backman, J., Elderfield, H., and Ferretti, P., 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436: 341-346. Webb, P-N., 1979. Paleogeographic evolution of the Ross sector during the Cenozoic. Mem. NIPR, Special Issue 13: 206-212. Wei, W., Wise, S.W., Jr., 1992. Selected Neogene calcareous nannofossil index taxa of the Southern Ocean: biochronology, biometrics and paleoceanography. In Wise, S.W., Jr., Schlich, R., et al., Proc. ODP, Sci. Results, 120: College Station, TX (Ocean Drilling Program), 523-537. http://hdl.handle.net/2122/2184 open Antarctic 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology manuscript 2006 ftingv 2022-07-29T06:04:24Z The major role for the ACC, as inferred in the past, is to have caused or stabilised full Antarctic glaciation. This role has since been questioned, and other hypothesised roles are relatively minor. Using a “smoking gun” assumption, determination of the time of onset of an ACC will resolve uncertainties in its role, and constrain the importance of ocean circulation to climate. To this end, we summarise all published estimates of ACC onset. The time of onset, of shallow circulation or deep, is extremely uncertain, whether based on tectonic studies or the interpretation of changes in the sediment record. Two potential final barriers to circumpolar flow have been identified; south of Tasmania and south of South America. The former is wellconstrained by tectonics and marine geology to before 32 Ma for a deep gap, with a shallow gap in place by 35.5 Ma at the latest. These ages fit nicely with the onset of full Antarctic glaciation at 33-34 Ma, although some workers deny the causality. Estimates of the time of opening of the latter range very widely, whether based on tectonics or sedimentary geology, from as recently as 6 Ma to as early as 41 Ma, with the gap depth uncertain also. Resolution of the tectonics-based uncertainties by additional survey being most probably both timeconsuming and inconclusive, and the geological estimates being open to alternative interpretations, we define an optimal strategy for additional sampling and measurement, designed to resolve the time of onset much more certainly, possibly also resolving between deep and shallow opening, and thereby constraining the ACC role. Sample sites would have to be close to likely final barriers, to avoid extraneous influence, and within modern zones of ACC influence, ideally would form a depth transect, and would have continuous, mixed terrigenous and biogenic sections. A wide range of carefully-selected parameters would be measured at each. Submitted open Manuscript Antarc* Antarctic Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Antarctic The Antarctic Paleoceanography 19 4 n/a n/a