Shallow Sea Gas Manifestations in the Aegean Sea (Greece) as Natural Analogs to Study Ocean Acidification: First Catalog and Geochemical Characterization

The concepts of CO2 emission, global warming, climate change, and their environmental impacts are of utmost importance for the understanding and protection of the ecosystems. Among the natural sources of gases into the atmosphere, the contribution of geogenic sources plays a crucial role. However, w...

Full description

Bibliographic Details
Published in:Frontiers in Marine Science
Main Authors: Daskalopoulou, Kyriaki, D'Alessandro, Walter, Longo, Manfredi, Pecoraino, Giovannella, Calabrese, Sergio
Other Authors: Institute of Geosciences, University of Potsdam, Potsdam Golm, Germany, FZ German Research Centre for Geosciences, Potsdam, Germany, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media SA 2022
Subjects:
Online Access:http://hdl.handle.net/2122/15294
https://doi.org/10.3389/fmars.2021.775247
id ftingv:oai:www.earth-prints.org:2122/15294
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic CO2 emissions
submarine gas vents
geogenic degassing
environmental impac
Greek Islands
gas flux
spellingShingle CO2 emissions
submarine gas vents
geogenic degassing
environmental impac
Greek Islands
gas flux
Daskalopoulou, Kyriaki
D'Alessandro, Walter
Longo, Manfredi
Pecoraino, Giovannella
Calabrese, Sergio
Shallow Sea Gas Manifestations in the Aegean Sea (Greece) as Natural Analogs to Study Ocean Acidification: First Catalog and Geochemical Characterization
topic_facet CO2 emissions
submarine gas vents
geogenic degassing
environmental impac
Greek Islands
gas flux
description The concepts of CO2 emission, global warming, climate change, and their environmental impacts are of utmost importance for the understanding and protection of the ecosystems. Among the natural sources of gases into the atmosphere, the contribution of geogenic sources plays a crucial role. However, while subaerial emissions are widely studied, submarine outgassing is not yet well understood. In this study, we review and catalog 122 literature and unpublished data of submarine emissions distributed in ten coastal areas of the Aegean Sea. This catalog includes descriptions of the degassing vents through in situ observations, their chemical and isotopic compositions, and flux estimations. Temperatures and pH data of surface seawaters in four areas affected by submarine degassing are also presented. This overview provides useful information to researchers studying the impact of enhanced seawater CO2 concentrations related either to increasing CO2 levels in the atmosphere or leaking carbon capture and storage systems. Published 775247 6V. Pericolosità vulcanica e contributi alla stima del rischio JCR Journal
author2 Institute of Geosciences, University of Potsdam, Potsdam Golm, Germany, FZ German Research Centre for Geosciences, Potsdam, Germany
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia
format Article in Journal/Newspaper
author Daskalopoulou, Kyriaki
D'Alessandro, Walter
Longo, Manfredi
Pecoraino, Giovannella
Calabrese, Sergio
author_facet Daskalopoulou, Kyriaki
D'Alessandro, Walter
Longo, Manfredi
Pecoraino, Giovannella
Calabrese, Sergio
author_sort Daskalopoulou, Kyriaki
title Shallow Sea Gas Manifestations in the Aegean Sea (Greece) as Natural Analogs to Study Ocean Acidification: First Catalog and Geochemical Characterization
title_short Shallow Sea Gas Manifestations in the Aegean Sea (Greece) as Natural Analogs to Study Ocean Acidification: First Catalog and Geochemical Characterization
title_full Shallow Sea Gas Manifestations in the Aegean Sea (Greece) as Natural Analogs to Study Ocean Acidification: First Catalog and Geochemical Characterization
title_fullStr Shallow Sea Gas Manifestations in the Aegean Sea (Greece) as Natural Analogs to Study Ocean Acidification: First Catalog and Geochemical Characterization
title_full_unstemmed Shallow Sea Gas Manifestations in the Aegean Sea (Greece) as Natural Analogs to Study Ocean Acidification: First Catalog and Geochemical Characterization
title_sort shallow sea gas manifestations in the aegean sea (greece) as natural analogs to study ocean acidification: first catalog and geochemical characterization
publisher Frontiers Media SA
publishDate 2022
url http://hdl.handle.net/2122/15294
https://doi.org/10.3389/fmars.2021.775247
genre Ocean acidification
genre_facet Ocean acidification
op_relation Frontiers in Marine Science
/8(2022)
Agostini, S., Doglioni, C., Innocenti, F.,Manetti, P., and Tonarini, S. (2010). On the geodynamics of the Aegean rift. Tectonophysics 488, 7–21. doi:10.1016/j.tecto. 2009.07.025 Aiuppa, A., Allard, P., D’Alessandro, W., Michel, A., Parello, F., Treuil, M., et al. (2000). Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochim. Cosmochim. Acta 64, 1827–1841. doi:10.1016/s0016-7037(00)00345-8 Aiuppa, A., Hall-Spencer, J. M., Milazzo, M., Turco, G., Caliro, S., and Di Napoli, R. (2021). Volcanic CO2 seep geochemistry and use in understanding ocean acidification. Biogeochemistry 152, 93–115. doi:10.1007/s10533-020-00737-9 Aliani, S., Meloni, R., and Dando, P. R. (2004). Periodicities in sediment temperature timeseries at a marine shallow water hydrothermal vent in Milos Island (Aegean Volcanic arc, Eastern Mediterranean). J.Mar. Syst. 46, 109–119. doi:10.1016/j.jmarsys.2003.11.015 Allen, S. R., and McPhie, J. (2000). Water-settling and resedimentation of submarine rhyolitic pumice at Yali eastern Aegean Greece. J. Volcanol. Geotherm. Res. 95, 285–307. doi:10.1016/S0377-0273(99)00127-4 Baggini, C., Issaris, Y., Salomidi, M., and Hall-Spencer, J. (2015). Herbivore diversity improves benthic community resilience to ocean acidification. J. Exp. Mar. Biol. Ecol. 469, 98–104. Baggini, C., Salomidi, M., Voutsinas, E., Bray, L., Krasakopoulou, E., and Hall- Spencer, J. M. (2014). Seasonality affects macroalgal community response to increases in pCO2. PLoS One 9:e106520. doi:10.1371/journal.pone.0106520 Baltatzis, E., Valsami-Jones, E.,Magganas, A., and Kati, M. (2001). Tamarugite from Milos Island, Greece. Neues Jahrb. für Mineral. Monatshefte 8, 371–377. Bernard, B. B., Brooks, J. M., and Sackett, W. M. (1978). “A geochemical model for characterization of hydrocarbon gas sources in marine sediments,” in Proceedings of the Offshore Technology Conference, Houston, TX, 435–438. Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., et al. (2019). “Changing ocean, marine ecosystems, and dependent communities,” in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, eds H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, et al. (Geneva: Intergovernmental Panel on Climate Change). Blackford, J., Stahl, H., Bull, J. M., Berges, B. J. B., Cevatoglu, M., Lichtschlag, A., et al. (2014). Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nat. Clim. Change 4, 1011–1016. doi: 10. 1038/nclimate2381 Boatta, F., D’Alessandro, W., Gagliano, A. L., Liotta, M., Milazzo, M., Rodolfo- Metalpa, R., et al. (2013). Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. Mar. Pollut. Bull. 73, 485–494. doi:10.1016/j.marpolbul.2013.01.029 Boccaletti, M., Manetti, P., and Peccerillo, A. (1974). The Balkanids as an instance of back-arc thrust belt: possible relation with the Hellenids. Geol. Soc. Am. Bull. 85, 1077–1084. doi:10.1130/0016-7606197485<1077:TBAAIO<2.0.CO;2 Böstrom, K., and Widenfalk, L. (1984). The origin of iron-rich muds at the Kameni Islands, Santorini, Greece. Chem. Geol. 42, 203–216. doi:10.1016/0009- 2541(84)90015-9 Botz, R., Stüben, D., Winckler, G., Bayer, R., Schmitt, M., and Faber, E. (1996). Hydrothermal gases from offshore Milos Island, Greece. Chem. Geol. 130, 161–173. Bray, L., Pancucci-Papadopoulou, M. A., and Hall-Spencer, J. M. (2014). Sea urchin response to rising pCO2 shows ocean acidification may fundamentally alter the chemistry of marine skeletons. Med. Mar. Sci. 15:510. doi:10.12681/mms.579 Caldeira, K., and Wicket, M. E. (2005). Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. 110:C09S04. doi:10.1029/2004jc002671 Caramanna, G., Sievert, S. M., and Bühring, S. I. (2021). Submarine shallow-water fluid emissions and their geomicrobiological imprint: a global overview. Front. Mar. Sci. 8:727199. doi:10.3389/fmars.2021.727199 Carey, S., Bell, K. L. C., Nomikou, P., Vougioukalakis, G., Roman, C., Cantner, K., et al. (2011). Exploration of the Kolumbo volcanic rift zone. “New frontiers in ocean exploration” the E/V Nautilus 2010 field season. Oceanography 24, 24–25. Carey, S., Nomikou, P., Croff Bell, K., Lilley, M., Lupton, J., Roman, C., et al. (2013). CO2 degassing from hydrothermal vents at Kolumbo submarine volcano, Greece, and the accumulation of acidic crater water. Geology 41, 1035–1038. doi:10.1130/G34286.1 Chiodini, G., Cioni, R., Di Paola, G. M., Dotsika, E., Fytikas, M., Guidi, M., et al. (1998). “Geochemistry of Santorini fluids,” in Proceedings of the 2nd Workshop, Frontiers in Marine Science %7C www.frontiersin.org 15 January 2022 %7C Volume 8 %7C Article 775247 Daskalopoulou et al. Shallow Submarine Degassing, Aegean Sea The European laboratory volcanoes. Santorini, Greece, EUR 18161 EN, eds R. Casale, M. Fytikas, G. Sigvaldasson, and G. E. Vougioukalakis (Luxembourg: European Commission), 193–232. Cornwall, C. E., and Hurd, C. L. (2016). Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581. doi:10.1093/ icesjms/fsv118 Cronan, D. S., and Varnavas, S. P. (1999). Metalliferous sediments off Milos, Hellenic Volcanic Arc. Explor. Min. Geol. 8, 289–297. D’Alessandro, W., Brusca, L., Kyriakopoulos, K., Bellomo, S., and Calabrese, S. (2014). A geochemical traverse along the “Sperchios Basin — Evoikos Gulf” Graben (Central Greece): origin and evolution of the emitted fluids.Mar. Petrol. Geol. 55, 295–308. doi:10.1016/j.marpetgeo.2013.12.011 D’Alessandro, W., Brusca, L., Kyriakopoulos, K., Michas, G., and Papadakis, G. (2008). Methana, the westernmost active volcanic system of the south Aegean arc (Greece): insight from fluids geochemistry. J. Volcanol. Geotherm. Res. 178, 818–828. doi:10.1016/j.jvolgeores.2008.09.014 D’Alessandro, W., Calabrese, S., Bellomo, S., Brusca, L., Daskalopoulou, K., Vigni, L. L., et al. (2020). Impact of hydrothermal alteration processes on element mobility and potential environmental implications at the Sousaki solfataric field (Corinthia–Greece). J. Volcanol. Geotherm. Res. 407:107121. doi:10.1016/ j.jvolgeores.2020.107121 Dando, P. R., Hughes, J. A., Leahy, Y., Niven, S. J., Taylor, L. J., and Smith, C. (1995). Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc. Cont. Shelf Res. 15, 913–929. doi:10.1016/0278- 4343(95)80002-U Daskalopoulou, K., Calabrese, S., Gagliano, A. L., and D’Alessandro, W. (2019a). Estimation of the geogenic carbon degassing of Greece. Appl. Geochem. 106, 60–74. doi:10.1016/j.apgeochem.2019.04.018 Daskalopoulou, K., Gagliano, A. L., Calabrese, S., Li Vigni, L., Longo, M., Kyriakopoulos, K., et al. (2019b). Degassing at the volcanic/geothermal system of kos (Greece): geochemical characterization of the released gases and CO2 output estimation. Geofluids 2019:3041037. doi:10.1155/2019/3041037 Daskalopoulou, K., Calabrese, S., Gagliano, A. L., Kyriakopoulos, K., Li Vigni, L., Longo, M., et al. (2021a). Chemical characterisation of the gases released at Gyali Island, Dodecanese, Greece and preliminary estimation of the CO2 output. It. J. Geosci. 140, 16–28. doi:10.3301/IJG.2020.18 Daskalopoulou, K., Woith, H., Zimmer, M., Niedermann, S., Barth, J. A. C., Frank, A. H., et al. (2021b). Insight into Hartoušov Mofette, Czech Republic: tales by the fluids. Front. Earth Sci. 9:615766. doi:10.3389/feart.2021.615766 Daskalopoulou, K., Calabrese, S., Grassa, F., Kyriakopoulos, K., Parello, F., Tassi, F., et al. (2018a). Origin of methane and light hydrocarbons in natural fluid emissions: a key study from Greece. Chem. Geol. 479, 286–301. doi:10.1016/j. chemgeo.2018.01.027 Daskalopoulou, K., Gagliano, A. L., Calabrese, S., Longo, M., Hantzis, K., Kyriakopoulos, K., et al. (2018b). Gas geochemistry and CO2 output estimation at the island of Milos, Greece. J. Volcanol. Geotherm. Res. 365, 13–22. doi:10.1016/j.jvolgeores.2018.10.003 De Orte, M. R., Sarmiento, A. M., Basallote, M. D., Rodríguez-Romero, A., Riba, I., and Delvalls, A. (2014). Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations. Sci. Total Environ. 470–471, 356–363. doi:10.1016/j.scitotenv.2013. 09.095 Di Napoli, R., Aiuppa, A., Bergsson, B., Ilyinskaya, E., Pfeffer, M. A., Gugjónsdóttir, S. R., et al. (2016). Reaction path models of magmatic gas scrubbing. Chem. Geol. 420, 251–269. doi:10.1016/j.chemgeo.2015.11.024 Dimitriadis, I., Karagianni, E., Panagiotopoulos, D., Papazachos, C., Hatzidimitriou, P., Bohnhoff, M., et al. (2009). Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): monitoring an active volcano at Santorini volcanic center using a temporary seismic network. Tectonophysics 465, 136–149. doi:10.1016/j.tecto.2008.11.005 Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annu. Rev.Mar. Sci. 1, 169–192. doi:10.1146/annurev. marine.010908.163834 Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., et al. (2012). Climate change impacts on marine ecosystems. Ann. Rev.Mar. Sci. 4, 11–37. doi:10.1146/annurev-marine-041911-111611 Doo, S. S., Kealoha, A., Andersson, A., Cohen, A. L., Hicks, T. L., Johnson, Z. I., et al. (2020). The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES J. Mar. Sci. 77, 2411–2422. doi:10.1093/ icesjms/fsaa094 Dotsika, E. (2012). Isotope and hydrochemical assessment of the Samothraki Island geothermal area, Greece. J. Volcanol. Geotherm. Res. 233–234, 18–26. doi:10.1016/j.jvolgeores.2012.04.017 Dotsika, E., Poutoukis, D., Michelot, J. L., and Raco, B. (2009). Natural tracers for identifying the origin of the thermal fluids emerging along the Aegean volcanic arc (Greece): evidence of arc-type magmatic water (ATMW) participation. J. Volcanol. Geotherm. Res. 179, 19–32. doi:10.1016/j.jvolgeores.2008.09.024 Drever, J. I. (1997). The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd Edn. Upper Saddle River, NJ: Prentice Hall. Druitt, T. H., Edwards, L., Mellors, M., Pyle, D. M., Sparks, R. S. J., Lanphere, M., et al. (1999). Santorini Volcano (Geological map of the Santorini islands, Scale 1/20.000). Geological Society Memoir No. 19. London: Geological Society. Druitt, T. H., Mellors, R. A., Pyle, D. M., and Sparks, R. S. J. (1989). Explosive volcanism on Santorini, Greece. Geol. Mag. 126, 95–126. doi:10.1017/ S0016756800006270 Enochs, I. C., Manzello, D. P., Tribollet, A., Valentino, L., Kolodziej, G., Donham, E. M., et al. (2016). Elevated colonization of microborers at a volcanically acidified coral reef. PLoS One 11:e0159818. doi:10.1371/journal.pone.0159818 Etiope, G., and Schoell, M. (2014). Abiotic gas: atypical but not rare. Elements 10, 291–296. Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., et al. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Change 1, 165–169. doi:10.1038/ nclimate1122 Flohr, A., Schaap, A., Achterberg, E. P., Alendal, G., Arundell, M., Berndt, C., et al. (2021). Towards improved monitoring of offshore carbon storage: a real-world field experiment detecting a controlled sub-seafloor CO2 release. Int. J. Greenh. Gas Control 106:103237. doi:10.1016/j.ijggc.2020.103237 Foo, S. A., Byrne, M., Ricevuto, E., and Gambi, M. C. (2018). “The carbon dioxide vents of ischia, italy, a natural system to assess impacts of ocean acidification on marine ecosystems: an overview of research and comparisons with other vent systems,” in Oceanography andMarine Biology, An Annual Review, eds S. J. Hawkins, A. J. Evans, A. C. Dale, L. B. Firth, and I. P. Smith (Boca Raton, FL: CRC Press). doi:10.1201/9780429454455 Foutrakis, P. M., and Anastasakis, G. (2018). The active submarine NW termination of the south Aegean active volcanic arc: the submarine Pausanias volcanic field. J. Volcanol. Geotherm. Res. 357, 399–417. doi:10.1016/j. jvolgeores.2018.05.008 Francalanci, L., Vougioukalakis, G. E., Perini, G., and Manetti, P. A. (2005). “West-East traverse along the magmatism of the South Aegean volcanic arc in the light of volcanological, chemical and isotope data,” in The South Aegean Active Volcanic Arc, Present Knowledge and Future Perspectives, Developments in Volcanology, Vol. 7, eds M. Fitykas and G. E. Vougioukalakis (Amsterdam: Elsevier), 65–111. doi:10.1016/S1871-644X(05)80033-6 Fytikas, M., Giuliani, O., Innocenti, F., Marinelli, G., and Mazzuoli, R. (1976). Geochronological data on recent magmatism of the Aegean Sea. Tectonophysics 31, T29–T34. doi:10.1016/0040-1951(76)90161-X Fytikas, M., Innocenti, F., Kolios, N., Manetti, P., and Mazzuoli, R. (1986). The plio-quaternary volcanism of Saronikos area (western part of the active Aegean volcanic arc). Ann. Geol. Pays Hellen. 33, 23–45. Fytikas, M., Innocenti, F., Manetti, P., Mazuoli, R., Peccerilo, A., and Villari, L. (1984). “Tertiary to quaternary evolution of the volcanism in Aegean Sea,” in The Geological Evolution of the Eastern Mediterranean, Vol. 17, eds J. E. Dixon and A. H. F. Robertson (London: Geological Society of London Special Publications), 687–699. Fytikas, M., and Kolios, N. (1979). “Preliminary heat flow map of Greece,” in Terrestrial Heat Flow in Europe, eds V. Cermak and L. Rybach (Berlin: Springer- Verlag), 197–205. Gattuso, J.-P., and Hansson, L. (2011). “Ocean acidification: background and history,” in Ocean Acidification, eds J.-P. Gattuso and L. Hansson (Oxford: Oxford University Press), 1–20. Gautier, P., Brun, J. P., and Jolivet, L. (1993). Structure and kinematics of upper cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece). Tectonics 12, 1180–1194. doi:10.1029/93TC01131 Giovannelli, D., and Price, R. E. (2018). “Marine shallow-water hydrothermal vents: microbiology,” in Reference Module in Earth Systems and Environmental Frontiers in Marine Science %7C www.frontiersin.org 16 January 2022 %7C Volume 8 %7C Article 775247 Daskalopoulou et al. Shallow Submarine Degassing, Aegean Sea Sciences, Vol. 4, (Amsterdam: Elsevier), 353–363. doi:10.1016/b978-0-12- 409548-9.11250-3 Godelitsas, A., Price, R. E., Pichler, T., Amend, J., Gamaletsos, P., and Göttlicher, J. (2015). Amorphous as-sulfide precipitates from the shallow-water hydrothermal vents off Milos Island (Greece). Mar. Chem. 177, 687–696. doi:10.1016/j.marchem.2015.09.004 Golbuu, Y., Gouezo, M., Kurihara, H., Rehm, L., and Wolanski, E. (2016). Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs 35, 909–918. doi:10.1007/s00338-016-1457- 5 Gros, J., Schmidt, M., Linke, P., Dötsch, S., Triest, J., Martínez-Cabanas, M., et al. (2021). Quantification of dissolved CO2 plumes at the Goldeneye CO2-release experiment. Int. J. Greenh. Gas Control 109:103387. doi:10.1016/j.ijggc.2021. 103387 Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S., Hoppema, M., et al. (2019). The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199. Hall-Spencer, J. M., Rodolfo-Metalpa, R.,Martin, S., Ransome, E., Fine, M., Turner, S. M., et al. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99. doi:10.1038/nature07051 HAUGAN, P. M., and Drange, H. (1996). Effects of CO2 on the ocean environment. Energy Convers. Manage. 37, 1019–1022. doi:10.1016/0196-8904(95)00292-8 Heiken, G., and McCoy, F. (1984). Caldera development during the Minoan eruption, Thera, Cyclades, Greece. J. Geophys. Res. 89, 8441–8462. doi:10.1029/ JB089iB10p08441 Hernández, C. A., Sangil, C., and Hernández, J. C. (2016). A new CO2 vent for the study of ocean acidification in the Atlantic. Mar. Pollut. Bull. 109, 419–426. doi:10.1016/j.marpolbul.2016.05.040 Hunziker, J. C., and Marini, L. (2005). The Geology, Geochemistry and Evolution of Nisyros Volcano. Implications for the Volcanic Hazard. Lausanne: Memoires Geologie, 44. IPCC (2005). “IPCC special report on carbon dioxide capture and storage,” in Working Group III of the Intergovernmental Panel on Climate Change, eds B. Metz, O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (Cambridge: Cambridge University Press), 442. IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, eds V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Cambridge: Cambridge University Press). Ivarsson, M., Kilias, S. P., Broman, C., Neubeck, A., Drake, H., Chi Fru, E., et al. (2019). Exceptional preservation of fungi as H2-bearing fluid inclusions in an early quaternary paleo-hydrothermal system at Cape Vani, Milos, Greece. Minerals 9:749. doi:10.3390/min9120749 Jiang, L. Q., Carter, B. R., Feely, R. A., Lauvset, S. K., and Olsen, A. (2019). Surface ocean pH and buffer capacity: past, present and future. Sci. Rep. 9:18624. doi:10.1038/s41598-019-55039-4 Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., et al. (2013). Aegean tectonics: strain localisation, slab tearing and trench retreat. Tectonophysics 597–598, 1–33. doi:10.1016/j.tecto.2012.06.011 Joos, F., Frolicher, T. L., Steinacher, M., and Plattner, G.-K. (2011). “Impact of climate change mitigation on ocean acidification projections,” in Ocean Acidification, eds J. P. Gattuso and L. Hansson (Oxford: Oxford University Press), 273–289. Kanellopoulos, C. (2012). Distribution, lithotypes and mineralogical study of newly formed thermogenic travertines in Northern Euboea and Eastern Central Greece. Centr. Eur. J. Geosci. 4, 545–560. doi:10.2478/s13533-012- 0105-z Kanellopoulos, C., Mitropoulos, P., Valsami-Jones, E., and Voudouris, P. (2017). A new terrestrial active mineralizing hydrothermal system associated with orebearing travertines in Greece (northern Euboea Island and Sperchios area). J. Geochem. Explor. 179, 9–24. doi:10.1016/j.gexplo.2017.05.003 Kauffmann, G., Kockel, F., and Mollat, H. (1976). Notes on the stratigraphic and paleogeographic position of the svoula formation in the innermost zone of the Hellenides (Nothern Greece). Bull. Soc. Géol. Fr. 7/18, 225–230. Khimasia, A., Renshaw, C. E., Price, R. E., and Pichler, T. (2021). Hydrothermal flux and porewater geochemistry in Paleochori Bay, Milos, Greece. Chem. Geol. 571:120188. doi:10.1016/j.chemgeo.2021.120188 Khimasia, A., Rovere, A., and Pichler, T. (2020). Hydrothermal areas, microbial mats and sea grass in Paleochori Bay, Milos, Greece. J. Maps 16, 348–356. doi:10.1080/17445647.2020.1748131 Kilias, S. P., Nomikou, P., Papanikolaou, D., Polymenakou, P. N., Godelitsas, A., Argyraki, A., et al. (2013). New insights into hydrothermal vent processes in the unique shallowsubmarine arc-volcano, Kolumbo (Santorini), Greece. Sci. Rep. 3:2421. doi:10.1038/srep02421 Kipfer, R., Aeschbach-Hertig, W., Peeters, F., and Stute, M. (2002). Noble gases in lakes and ground waters. Rev. Mineral. Geochem. 47, 615–700. doi:10.2138/ rmg.2002.47.14 Koch, M., Bowes, G., Ross, C., and Zhang, X.-H. (2012). Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. doi:10.1111/j.1365-2486.2012.02791.x Kockel, F., Mollat, H., and Walther, H. W. (1977). Erlauterungen zur Geologischen Karte der Chalkidiki und Angrenzender Gebiete 1:100.000 (Nord Griechenland). Hannover: Bundesanstalt fur Geowissenschaften und Rohstoffe, 1–119. Kokkalas, S., and Aydin, A. (2013). Is there a link between faulting and magmatism in the south-central Aegean Sea? Geol. Mag. 150, 193–224. doi:10.1017/ S0016756812000453 Kotopouli, C. N., Hatzipanagiotou, K., and Tsikouras, B. (1989). Petrographic and geochemical characteristics of the ophioltic rocks in Northern Samothrace, Greece. Geol. Balc. 19, 61–67. Kreemer, C., Chamot-Rooke, N., and Le Pichon, X. (2004). Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data. Earth Planet. Sci. Lett. 225, 329–346. doi:10.1016/j.epsl.2004.06.018 Kyriakopoulos, K. (2010). “Natural degassing of carbon dioxide and hydrogen sulphide and its environmental impact at Milos Island, Greece,” in Proceedings of the 12th International Congress, Patras, 2361–2372. La Ruffa, G., Panichi, C., Kavouridis, T., Liberopoulou, V., Leontiadis, J., and Caprai, A. (1999). Isotope and chemical assessment of geothermal potential of Kos island, Greece. Geothermics 28, 205–217. doi:10.1016/S0375-6505(99) 00004-8 Lagios, E., Galanopoulos, D., Hobbs, B. A., and Dawes, G. J. K. (1998). Twodimensional magnetotelluric modelling of the Kos island geothermal region (Greece). Tectonophysics 287, 157–172. doi:10.1016/S0040-1951(98)80066-8 Lauritano, C., Ruocco, M., Dattolo, E., Buia, M. C., Silva, J., Santos, R., et al. (2015). Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents. Biogeoscience 12, 4185–4194. doi:10.5194/bg-12-4185-2015 Lazaridis, G., Melfos, V., and Papadopoulou, L. (2011). The first cave occurrence of orpiment (N. Greece). Int. J. Speleol. 40, 133–139. doi:10.5038/1827-806X.40.2. 6 Le Pichon, X., Lybéris, N., and Alvarez, F. (1987). Discussion on the subsidence of the North Aegean trough: an alternative view. J. Geol. Soc. 144, 349–351. doi:10.1144/gsjgs.144.2.0349 Li Vigni, L., Daskalopoulou, K., Calabrese, S., Kyriakopoulos, K., Parello, F., Brugnone, F., et al. (2021). Geochemical characterisation of the thermo-mineral waters of Greece. Environ. Geochem. Health doi:10.1007/s10653-021-01001-1 Linares, C., Vidal, M., Canals, M., Kersting, D. K., Amblas, D., Aspillaga, E., et al. (2015). Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proc. R. Soc. B Biol. Sci. 282:20150587. doi:10.1098/rspb. 2015.0587 Lister, G. S., Banga, G., and Feenstra, A. (1984). Metamorphic core complexes of cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12, 221–225. doi:10.1130/0091-7613198412<221:MCCOCT<2.0.CO;2 Marini, L., Principe, C., Chiodini, G., Cioni, R., Frytikas, M., and Marinelli, G. (1993). Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard. J. Volcanol. Geotherm. Res. 56, 71–95. doi:10.1016/0377- 0273(93)90051-R Megalovasilis, P. (2020). Geochemistry of hydrothermal particles in shallow submarine hydrothermal vents on Milos Island, Aegean Sea East Mediterranean. Geochem. Int. 58, 151–181. doi:10.1134/s001670292002007x Mercier, J., Delibassis, N., Gauthier, A., Jarrige, J. J., Lemeille, F., Philip, H., et al. (1979). La néotectonique de l’Arc Egéen. Rev. Géol. Dyn. Géogr. Phys. 21, 67–92. Millero, F., Woosley, R., DiTrolio, B., and Waters, J. (2009). Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22, 72–85. doi:10.5670/oceanog.2009.98 Frontiers in Marine Science %7C www.frontiersin.org 17 January 2022 %7C Volume 8 %7C Article 775247 Daskalopoulou et al. Shallow Submarine Degassing, Aegean Sea Monastersky, R. (2013). Seabed scars raise questions over carbon-storage plan. Nature 504, 339–340. doi:10.1038/504339a Mountrakis, D., Pavlides, S., Chatzipetros, A., Meletidis, S., Tranos, M., Vougioukalakis, G., et al. (1998). “Active deformation in Santorini,” in The European Laboratory Volcanoes, eds R. Casale, M. Fytikas, G. Sigvaldarsson, and G. Vougioukalakis (Brussels: European Commission), 13–22. Mountrakis, D. M. (1985). Geology of Greece. Thessaloniki: University Studio Press, 207. (in Greek). NOAA (2021). National Oceanic & Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division, Trends in Atmospheric Carbon Dioxide. Available online at: https://www.esrl.noaa.gov/gmd/ccgg/ trends/ (accessed December 2021) Oikonomidis, D., and Pavlides, S. (2017). Geological mapping of Santorini Volcanic island (Greece), with the combined use of Pleiades 1A and ENVISAT satellite images. Arab. J. Geosci. 10:175. doi:10.1007/s12517-017-2972-6 Parks, M. M., Caliro, S., Chiodini, G., Pyle, D. M., Mather, T. A., Berlo, K., et al. (2013). Distinguishing contributions to diffuse CO2 emissions in volcanic areas from magmatic degassing and thermal decarbonation using soil gas 222Rn– d13C systematics: application to Santorin volcano, Greece. Earth Planet. Sci. Let. 377–378, 180–190. doi:10.1016/j.epsl.2013.06.046 Patoucheas, P., Koukousioura, O., Psarra, S., Aligizaki, K., Dimiza, M. D., Skampa, E., et al. (2021). Phytoplankton community structure changes during autumn and spring in response to environmental variables in Methana, Saronikos Gulf, Greece. Environ. Sci. Pollut. Res. 28, 33854–33865. doi:10.1007/s11356-020- 12272-z Pavlides, S. B., Valkaniotis, S., Ganas, A., Keramydas, D., and Sboras, S. (2004). The active fault of Atalanti–re-evaluation with new geological data. Bull. Geoll Soc. Greece 36, 1560–1567. (in Greek), Pavlidis, S., Valkaniotis, S., Kurcel, A., Papathanasiou, Y., and Xatzipetrou, A. (2005). Neotectonic structure of Samothraki Island in relation to the North Anatolia fault. Bull. Greek Geol. Soc. 37, 19–28. Pe-Piper, G., and Piper, D. J. W. (1989). Spatial and temporal variation in late cenozoic back-arc volcanic rocks, Aegean Sea Region. Tectonophysics 169, 113–134. doi:10.1016/0040-1951(89)90186-8 Pe-Piper, G., and Piper, D. J. W. (2002). The Igneous Rocks of Greece, The Anatomy of an Orogen. Beiträge zur regionalen Geologie der Erde, Band 30. Berlin: Gebrüder Bornträger. Price, R. E., and Giovannelli, D. (2017). “A review of the geochemistry and microbiology of marine shallow-water hydrothermal vents,” in Reference Module in Earth Systems and Environmental Sciences (Amsterdam: Elsevier). doi:10.1016/B978-0-12-409548-9.09523-3 Price, R. E., Savov, I., Planer-Friedrich, B., Bühring, S. I., Amend, J., and Pichler, T. (2013). Processes influencing extreme as enrichment in shallowsea hydrothermal fluids of Milos island, Greece. Chem. Geol. 348, 15–26. doi:10.1016/j.chemgeo.2012.06.007 Rahders, E., Halbach, P., Halbach, M., Rahner, S., and Varnavas, S. P. (1997). “Hydrothermal alteration and precipitation processes on Methana peninsula, Greece,” in Mineral Deposits: Research and Exploration, Where Do They Meet?, ed. H. Papunen (Rotterdam: Balkema), 965–966. Reid, R. C., Prausnitz, J. M., and Poling, B. E. (1987). The Properties of Gases & Liquids, 4th Edn. Boston, MA: McGraw-Hill. Rigakis, N., Roussos, N., Kamberis, E., and Proedrou, P. (2001). Hydrocarbon gas accumulations in Greece and their origin. Bull. Geol. Soc. Greece 34, 1265–1273. Rizzo, A. L., Caracausi, A., Chavagnac, V., Nomikou, P., Polymenakou, P. N., Mandalakis, M., et al. (2016). Kolumbo submarine volcano (Greece): an active window into the Aegean subduction system. Sci. Rep. 6:28013. doi:10.1038/ srep28013 Rizzo, A. L., Caracausi, A., Chavagnac, V., Nomikou, P., Polymenakou, P. N., Mandalakis, M., et al. (2019). Geochemistry of CO2-rich gases venting from submarine volcanism: the case of kolumbo (Hellenic Volcanic Arc, Greece). Front. Earth Sci. 7:60. doi:10.3389/feart.2019.00060 Roberts, H., Price, R., Brombach, C. C., and Pichler, T. (2021). Mercury in the hydrothermal fluids and gases in Paleochori Bay, Milos, Greece. Mar. Chem. 233:103984. doi:10.1016/j.marchem.2021.103984 Robertson, A. H. F., Clift, P. D., Degnan, P. J., and Jones, G. (1991). “Palaeogeographic and palaeotectonic evolution of the eastern Mediterranean Neotethys,” in Palaeogeography and Paleoceanography of Tethys: Special Issue of Palaeogeography Palaeoecology Palaeoecology, Vol. 87, eds J. E. T. Channell, E. L. Winterer, and L. F. Jansa (Amsterdam: Elsevier), 289–343. Rogelja, M., Cibic, T., Pennesi, C., and De Vittor, C. (2016). Microphytobenthic community composition and primary production at gas and thermal vents in the Aeolian Islands (Tyrrhenian Sea, Italy). Mar. Environ. Res. 118, 31–44. doi:10.1016/j.marenvres.2016.04.009 Russell, G. L., Lacis, A. A., Rind, D. H., Colose, C., and Opstbaum, R. F. (2013). Fast atmosphere-ocean model runs with large changes in CO2. Geophys. Res. Lett. 40, 5787–5792. doi:10.1002/2013GL056755 Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., et al. (2004). The oceanic sink for anthropogenic CO2. Science 305, 367–371. doi:10.1126/science.1097403 Sano, Y., and Marty, B. (1995). Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274. doi:10.1016/0009-2541(94)00097-2 Sano, Y., and Wakita, H. (1985). Geographical distribution of 3He/4He ratios in Japan: implications for arc tectonics and incipient magmatism. J. Geophys. Res. 90, 8729–8741. doi:10.1029/JB090iB10p08729 Sébrier, M. (1977). Tectonique Récente d’une Transversal à l’arc Égéen. Le golfe de Corinthe et ses Regions Périphériques. Ph.D. thesis. Paris: Université Paris XI-Orsay, 137. Shimizu, A., Sumino, H., Nagao, K., Notsu, K., and Mitropoulos, P. (2005). Variation in noble gas isotopic composition of gas samples from the Aegean arc, Greece. J. Volcanol. Geotherm. Res. 140, 321–339. doi:10.1016/j.jvolgeores. 2004.08.016 Sigurdsson, H., Carey, S., Alexandri, M., Vougioukalakis, G., Croff, K., Roman, C., et al. (2006). Marine investigations of Greece’s santorini volcanic field. Eos 87:337. doi:10.1029/2006eo340001 Smith, P. A., and Cronan, D. S. (1983). The geochemistry of metalliferous sediments and waters associated with shallow hydrothermal activity (Santorini, Greece). Mar. Geol. 39, 241–262. doi:10.1016/0009-2541(83) 90017-7 St. Seymour, K., Tsikouras, V., Kotopouli, K., Hatzipanayiotou, K., and Pe-Piper, G. (1996). A window to the operation of microplate tectonics in the tethys ocean: the geochemistry of samothrace granite, Aegean Sea. Mineral. Petrol. 56, 251–272. doi:10.1007/BF01162606 Stefánsson, A., Lemke, K. H., Bènèzeth, P., and Schott, J. (2017). Magnesium bicarbonate and carbonate interactions in aqueous solutions: an infrared spectroscopic and quantum chemical study. Geochim. Cosmochim. Acta 198, 271–284. doi:10.1016/j.gca.2016.10.032 Stefánsson, A., Sveinbjörnsdòttir, A. E., Heinemeier, J., Arnòrsson, S., Kjartansdòttir, R., and Kristmannsdòttir, H. (2016). Mantle CO2 degassing through the Icelandic crust: evidence from carbon isotopes in groundwater. Geochim. Cosmochim. Acta 191, 300–319. doi:10.1016/j.gca.2016.06.038 Stewart, A. L., and McPhie, J. (2006). Facies architecture and Late Ploicene— Pleistocene evolution of a felsic volcanic island, Milo, Greece. Bull. Volcanol. 68, 703–726. Stiros, S. (2000). “Fault pattern of Nisyros island volcano (Aegean Sea, Greece): structural, coastal and archaeological evidence,” in The Archaeology of Geological Catastrophes, Vol. 171, eds B. McGuire, et al. (London: Geological Society of London, Special Publications), 385–397. Symonds, R. B., Gerlach, T. M., and Reed, M. H. (2001). Magmatic gas scrubbing: implications for volcano monitoring. J. Volcanol. Geotherm. Res. 108, 303–341. doi:10.1016/S0377-0273(00)00292-4 Tarasov, V. G., Gebruk, A. V., Mironov, A. N., and Moskalev, L. I. (2005). Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chem. Geol. 224, 5–39. doi:10.1016/j.chemgeo.2005.07.021 Tarchini, L., Carapezza, M. L., Ranaldi, M., Sortino, F., Gattuso, A., and Acocella, V. (2019). Fluid geochemistry contribution to the interpretation of the 2011–2012 unrest of Santorini, Greece, in the frame of the dynamics of the Aegean Volcanic Arc. Tectonics 38, 1033–1049. doi:10.1029/2018TC005377 Tassi, F., Vaselli, O., Papazachos, C. B., Giannini, L., Chiodini, G., Vougioukalakis, G. E., et al. (2013). Geochemical and isotopic changes in the fumarolic and submerged gas discharges during the 2011–2012 unrest at Santorini caldera (Greece). Bull. Volcanol. 75:711. doi:10.1007/s00445-013-0711-8 Taymaz, T., Jackson, J., andMcKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophys. J. Int. 106, 433–490. doi:10.1111/j.1365-246X. 1991.tb03906.x Frontiers in Marine Science %7C www.frontiersin.org 18 January 2022 %7C Volume 8 %7C Article 775247 Daskalopoulou et al. Shallow Submarine Degassing, Aegean Sea Taymaz, T., Yilmaz, Y., and Dilek, Y. (2007). The Geodynamics of the Aegean and Anatolia: Introduction, Vol. 291. London: Geological Society of London, Special Publications, 1–16. Teixidó, N., Caroselli, E., Alliouane, S., Ceccarelli, C., Comeau, S., Gattuso, J. P., et al. (2020). Ocean acidification causes variable trait-shifts in a coral species. Glob. Chang. Biol. 26, 6813–6830. doi:10.1111/gcb.15372 Triantaphyllou, M. V., Baumann, K.-H., Karatsolis, B.-T., Dimiza, M. D., Psarra, S., Skampa, E., et al. (2018). Coccolithophore community response along a natural CO2 gradient off Methana (SW Saronikos Gulf, Greece, NE Mediterranean). PLoS One 13:e0200012. doi:10.1371/journal.pone.0200012 Tzanis, A., Chailas, S., Sakkas, V., and Lagios, E. (2020). Tectonic deformation in the Santorini volcanic complex (Greece) as inferred by joint analysis of gravity, magnetotelluric and DGPS observations. Geophys. J. Int. 220, 461–489. doi:10.1093/gji/ggz461 Vizzini, S., Tomasello, A., Di Maida, G., Pirrotta, M., Mazzola, A., and Calvo, S. (2010). Effect of explosive shallow hydrothermal vents on d13C and growth performance in the seagrass Posidonia oceanica. J. Ecol. 98, 1284–1291. doi:10.1111/j.1365-2745.2010.01730.x Voudouris, P., Kati, M., Magganas, A., Keith, M., Valsami-Jones, E., Haase, K., et al. (2021). Arsenian pyrite and cinnabar from active submarine nearshore vents, Paleochori Bay, Milos Island, Greece. Minerals 11:14. doi:10.3390/ min11010014 Whiticar, M., Faber, E., and Schoell, M. (1986). Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim. Cosmochim. Acta 50, 693–709. doi:10.1016/0016-7037(86)90346-7 Winkel, L. H. E., Casentini, B., Bardelli, F., Voegelin, A., Nikolaidis, N. P., and Charlet, L. (2013). Speciation of arsenic in Greek travertine: co-precipitation of arsenate with calcite. Geochim. Cosmochim. Acta 106, 99–110. doi:10.1016/j. gca.2012.11.049 Yücel, M., Sievert, S. M., Vetriani, C., Foustoukos, D. I., Giovannelli, D., and Le Bris, N. (2013). Eco-geochemical dynamics of a shallow-water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean). Chem. Geol. 356, 11–20. doi:10.1016/j.chemgeo.2013.07.020
http://hdl.handle.net/2122/15294
doi:10.3389/fmars.2021.775247
op_rights open
op_doi https://doi.org/10.3389/fmars.2021.775247
https://doi.org/10.1016/j.tecto
container_title Frontiers in Marine Science
container_volume 8
_version_ 1766158332884680704
spelling ftingv:oai:www.earth-prints.org:2122/15294 2023-05-15T17:51:15+02:00 Shallow Sea Gas Manifestations in the Aegean Sea (Greece) as Natural Analogs to Study Ocean Acidification: First Catalog and Geochemical Characterization Daskalopoulou, Kyriaki D'Alessandro, Walter Longo, Manfredi Pecoraino, Giovannella Calabrese, Sergio Institute of Geosciences, University of Potsdam, Potsdam Golm, Germany, FZ German Research Centre for Geosciences, Potsdam, Germany Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia 2022-01-31 http://hdl.handle.net/2122/15294 https://doi.org/10.3389/fmars.2021.775247 en eng Frontiers Media SA Frontiers in Marine Science /8(2022) Agostini, S., Doglioni, C., Innocenti, F.,Manetti, P., and Tonarini, S. (2010). On the geodynamics of the Aegean rift. Tectonophysics 488, 7–21. doi:10.1016/j.tecto. 2009.07.025 Aiuppa, A., Allard, P., D’Alessandro, W., Michel, A., Parello, F., Treuil, M., et al. (2000). Mobility and fluxes of major, minor and trace metals during basalt weathering and groundwater transport at Mt. Etna volcano (Sicily). Geochim. Cosmochim. Acta 64, 1827–1841. doi:10.1016/s0016-7037(00)00345-8 Aiuppa, A., Hall-Spencer, J. M., Milazzo, M., Turco, G., Caliro, S., and Di Napoli, R. (2021). Volcanic CO2 seep geochemistry and use in understanding ocean acidification. Biogeochemistry 152, 93–115. doi:10.1007/s10533-020-00737-9 Aliani, S., Meloni, R., and Dando, P. R. (2004). Periodicities in sediment temperature timeseries at a marine shallow water hydrothermal vent in Milos Island (Aegean Volcanic arc, Eastern Mediterranean). J.Mar. Syst. 46, 109–119. doi:10.1016/j.jmarsys.2003.11.015 Allen, S. R., and McPhie, J. (2000). Water-settling and resedimentation of submarine rhyolitic pumice at Yali eastern Aegean Greece. J. Volcanol. Geotherm. Res. 95, 285–307. doi:10.1016/S0377-0273(99)00127-4 Baggini, C., Issaris, Y., Salomidi, M., and Hall-Spencer, J. (2015). Herbivore diversity improves benthic community resilience to ocean acidification. J. Exp. Mar. Biol. Ecol. 469, 98–104. Baggini, C., Salomidi, M., Voutsinas, E., Bray, L., Krasakopoulou, E., and Hall- Spencer, J. M. (2014). Seasonality affects macroalgal community response to increases in pCO2. PLoS One 9:e106520. doi:10.1371/journal.pone.0106520 Baltatzis, E., Valsami-Jones, E.,Magganas, A., and Kati, M. (2001). Tamarugite from Milos Island, Greece. Neues Jahrb. für Mineral. Monatshefte 8, 371–377. Bernard, B. B., Brooks, J. M., and Sackett, W. M. (1978). “A geochemical model for characterization of hydrocarbon gas sources in marine sediments,” in Proceedings of the Offshore Technology Conference, Houston, TX, 435–438. Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., et al. (2019). “Changing ocean, marine ecosystems, and dependent communities,” in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, eds H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, et al. (Geneva: Intergovernmental Panel on Climate Change). Blackford, J., Stahl, H., Bull, J. M., Berges, B. J. B., Cevatoglu, M., Lichtschlag, A., et al. (2014). Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nat. Clim. Change 4, 1011–1016. doi: 10. 1038/nclimate2381 Boatta, F., D’Alessandro, W., Gagliano, A. L., Liotta, M., Milazzo, M., Rodolfo- Metalpa, R., et al. (2013). Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. Mar. Pollut. Bull. 73, 485–494. doi:10.1016/j.marpolbul.2013.01.029 Boccaletti, M., Manetti, P., and Peccerillo, A. (1974). The Balkanids as an instance of back-arc thrust belt: possible relation with the Hellenids. Geol. Soc. Am. Bull. 85, 1077–1084. doi:10.1130/0016-7606197485<1077:TBAAIO<2.0.CO;2 Böstrom, K., and Widenfalk, L. (1984). The origin of iron-rich muds at the Kameni Islands, Santorini, Greece. Chem. Geol. 42, 203–216. doi:10.1016/0009- 2541(84)90015-9 Botz, R., Stüben, D., Winckler, G., Bayer, R., Schmitt, M., and Faber, E. (1996). Hydrothermal gases from offshore Milos Island, Greece. Chem. Geol. 130, 161–173. Bray, L., Pancucci-Papadopoulou, M. A., and Hall-Spencer, J. M. (2014). Sea urchin response to rising pCO2 shows ocean acidification may fundamentally alter the chemistry of marine skeletons. Med. Mar. Sci. 15:510. doi:10.12681/mms.579 Caldeira, K., and Wicket, M. E. (2005). Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. 110:C09S04. doi:10.1029/2004jc002671 Caramanna, G., Sievert, S. M., and Bühring, S. I. (2021). Submarine shallow-water fluid emissions and their geomicrobiological imprint: a global overview. Front. Mar. Sci. 8:727199. doi:10.3389/fmars.2021.727199 Carey, S., Bell, K. L. C., Nomikou, P., Vougioukalakis, G., Roman, C., Cantner, K., et al. (2011). Exploration of the Kolumbo volcanic rift zone. “New frontiers in ocean exploration” the E/V Nautilus 2010 field season. Oceanography 24, 24–25. Carey, S., Nomikou, P., Croff Bell, K., Lilley, M., Lupton, J., Roman, C., et al. (2013). CO2 degassing from hydrothermal vents at Kolumbo submarine volcano, Greece, and the accumulation of acidic crater water. Geology 41, 1035–1038. doi:10.1130/G34286.1 Chiodini, G., Cioni, R., Di Paola, G. M., Dotsika, E., Fytikas, M., Guidi, M., et al. (1998). “Geochemistry of Santorini fluids,” in Proceedings of the 2nd Workshop, Frontiers in Marine Science %7C www.frontiersin.org 15 January 2022 %7C Volume 8 %7C Article 775247 Daskalopoulou et al. Shallow Submarine Degassing, Aegean Sea The European laboratory volcanoes. Santorini, Greece, EUR 18161 EN, eds R. Casale, M. Fytikas, G. Sigvaldasson, and G. E. Vougioukalakis (Luxembourg: European Commission), 193–232. Cornwall, C. E., and Hurd, C. L. (2016). Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581. doi:10.1093/ icesjms/fsv118 Cronan, D. S., and Varnavas, S. P. (1999). Metalliferous sediments off Milos, Hellenic Volcanic Arc. Explor. Min. Geol. 8, 289–297. D’Alessandro, W., Brusca, L., Kyriakopoulos, K., Bellomo, S., and Calabrese, S. (2014). A geochemical traverse along the “Sperchios Basin — Evoikos Gulf” Graben (Central Greece): origin and evolution of the emitted fluids.Mar. Petrol. Geol. 55, 295–308. doi:10.1016/j.marpetgeo.2013.12.011 D’Alessandro, W., Brusca, L., Kyriakopoulos, K., Michas, G., and Papadakis, G. (2008). Methana, the westernmost active volcanic system of the south Aegean arc (Greece): insight from fluids geochemistry. J. Volcanol. Geotherm. Res. 178, 818–828. doi:10.1016/j.jvolgeores.2008.09.014 D’Alessandro, W., Calabrese, S., Bellomo, S., Brusca, L., Daskalopoulou, K., Vigni, L. L., et al. (2020). Impact of hydrothermal alteration processes on element mobility and potential environmental implications at the Sousaki solfataric field (Corinthia–Greece). J. Volcanol. Geotherm. Res. 407:107121. doi:10.1016/ j.jvolgeores.2020.107121 Dando, P. R., Hughes, J. A., Leahy, Y., Niven, S. J., Taylor, L. J., and Smith, C. (1995). Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc. Cont. Shelf Res. 15, 913–929. doi:10.1016/0278- 4343(95)80002-U Daskalopoulou, K., Calabrese, S., Gagliano, A. L., and D’Alessandro, W. (2019a). Estimation of the geogenic carbon degassing of Greece. Appl. Geochem. 106, 60–74. doi:10.1016/j.apgeochem.2019.04.018 Daskalopoulou, K., Gagliano, A. L., Calabrese, S., Li Vigni, L., Longo, M., Kyriakopoulos, K., et al. (2019b). Degassing at the volcanic/geothermal system of kos (Greece): geochemical characterization of the released gases and CO2 output estimation. Geofluids 2019:3041037. doi:10.1155/2019/3041037 Daskalopoulou, K., Calabrese, S., Gagliano, A. L., Kyriakopoulos, K., Li Vigni, L., Longo, M., et al. (2021a). Chemical characterisation of the gases released at Gyali Island, Dodecanese, Greece and preliminary estimation of the CO2 output. It. J. Geosci. 140, 16–28. doi:10.3301/IJG.2020.18 Daskalopoulou, K., Woith, H., Zimmer, M., Niedermann, S., Barth, J. A. C., Frank, A. H., et al. (2021b). Insight into Hartoušov Mofette, Czech Republic: tales by the fluids. Front. Earth Sci. 9:615766. doi:10.3389/feart.2021.615766 Daskalopoulou, K., Calabrese, S., Grassa, F., Kyriakopoulos, K., Parello, F., Tassi, F., et al. (2018a). Origin of methane and light hydrocarbons in natural fluid emissions: a key study from Greece. Chem. Geol. 479, 286–301. doi:10.1016/j. chemgeo.2018.01.027 Daskalopoulou, K., Gagliano, A. L., Calabrese, S., Longo, M., Hantzis, K., Kyriakopoulos, K., et al. (2018b). Gas geochemistry and CO2 output estimation at the island of Milos, Greece. J. Volcanol. Geotherm. Res. 365, 13–22. doi:10.1016/j.jvolgeores.2018.10.003 De Orte, M. R., Sarmiento, A. M., Basallote, M. D., Rodríguez-Romero, A., Riba, I., and Delvalls, A. (2014). Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations. Sci. Total Environ. 470–471, 356–363. doi:10.1016/j.scitotenv.2013. 09.095 Di Napoli, R., Aiuppa, A., Bergsson, B., Ilyinskaya, E., Pfeffer, M. A., Gugjónsdóttir, S. R., et al. (2016). Reaction path models of magmatic gas scrubbing. Chem. Geol. 420, 251–269. doi:10.1016/j.chemgeo.2015.11.024 Dimitriadis, I., Karagianni, E., Panagiotopoulos, D., Papazachos, C., Hatzidimitriou, P., Bohnhoff, M., et al. (2009). Seismicity and active tectonics at Coloumbo Reef (Aegean Sea, Greece): monitoring an active volcano at Santorini volcanic center using a temporary seismic network. Tectonophysics 465, 136–149. doi:10.1016/j.tecto.2008.11.005 Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annu. Rev.Mar. Sci. 1, 169–192. doi:10.1146/annurev. marine.010908.163834 Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., et al. (2012). Climate change impacts on marine ecosystems. Ann. Rev.Mar. Sci. 4, 11–37. doi:10.1146/annurev-marine-041911-111611 Doo, S. S., Kealoha, A., Andersson, A., Cohen, A. L., Hicks, T. L., Johnson, Z. I., et al. (2020). The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES J. Mar. Sci. 77, 2411–2422. doi:10.1093/ icesjms/fsaa094 Dotsika, E. (2012). Isotope and hydrochemical assessment of the Samothraki Island geothermal area, Greece. J. Volcanol. Geotherm. Res. 233–234, 18–26. doi:10.1016/j.jvolgeores.2012.04.017 Dotsika, E., Poutoukis, D., Michelot, J. L., and Raco, B. (2009). Natural tracers for identifying the origin of the thermal fluids emerging along the Aegean volcanic arc (Greece): evidence of arc-type magmatic water (ATMW) participation. J. Volcanol. Geotherm. Res. 179, 19–32. doi:10.1016/j.jvolgeores.2008.09.024 Drever, J. I. (1997). The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd Edn. Upper Saddle River, NJ: Prentice Hall. Druitt, T. H., Edwards, L., Mellors, M., Pyle, D. M., Sparks, R. S. J., Lanphere, M., et al. (1999). Santorini Volcano (Geological map of the Santorini islands, Scale 1/20.000). Geological Society Memoir No. 19. London: Geological Society. Druitt, T. H., Mellors, R. A., Pyle, D. M., and Sparks, R. S. J. (1989). Explosive volcanism on Santorini, Greece. Geol. Mag. 126, 95–126. doi:10.1017/ S0016756800006270 Enochs, I. C., Manzello, D. P., Tribollet, A., Valentino, L., Kolodziej, G., Donham, E. M., et al. (2016). Elevated colonization of microborers at a volcanically acidified coral reef. PLoS One 11:e0159818. doi:10.1371/journal.pone.0159818 Etiope, G., and Schoell, M. (2014). Abiotic gas: atypical but not rare. Elements 10, 291–296. Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De’ath, G., et al. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Change 1, 165–169. doi:10.1038/ nclimate1122 Flohr, A., Schaap, A., Achterberg, E. P., Alendal, G., Arundell, M., Berndt, C., et al. (2021). Towards improved monitoring of offshore carbon storage: a real-world field experiment detecting a controlled sub-seafloor CO2 release. Int. J. Greenh. Gas Control 106:103237. doi:10.1016/j.ijggc.2020.103237 Foo, S. A., Byrne, M., Ricevuto, E., and Gambi, M. C. (2018). “The carbon dioxide vents of ischia, italy, a natural system to assess impacts of ocean acidification on marine ecosystems: an overview of research and comparisons with other vent systems,” in Oceanography andMarine Biology, An Annual Review, eds S. J. Hawkins, A. J. Evans, A. C. Dale, L. B. Firth, and I. P. Smith (Boca Raton, FL: CRC Press). doi:10.1201/9780429454455 Foutrakis, P. M., and Anastasakis, G. (2018). The active submarine NW termination of the south Aegean active volcanic arc: the submarine Pausanias volcanic field. J. Volcanol. Geotherm. Res. 357, 399–417. doi:10.1016/j. jvolgeores.2018.05.008 Francalanci, L., Vougioukalakis, G. E., Perini, G., and Manetti, P. A. (2005). “West-East traverse along the magmatism of the South Aegean volcanic arc in the light of volcanological, chemical and isotope data,” in The South Aegean Active Volcanic Arc, Present Knowledge and Future Perspectives, Developments in Volcanology, Vol. 7, eds M. Fitykas and G. E. Vougioukalakis (Amsterdam: Elsevier), 65–111. doi:10.1016/S1871-644X(05)80033-6 Fytikas, M., Giuliani, O., Innocenti, F., Marinelli, G., and Mazzuoli, R. (1976). Geochronological data on recent magmatism of the Aegean Sea. Tectonophysics 31, T29–T34. doi:10.1016/0040-1951(76)90161-X Fytikas, M., Innocenti, F., Kolios, N., Manetti, P., and Mazzuoli, R. (1986). The plio-quaternary volcanism of Saronikos area (western part of the active Aegean volcanic arc). Ann. Geol. Pays Hellen. 33, 23–45. Fytikas, M., Innocenti, F., Manetti, P., Mazuoli, R., Peccerilo, A., and Villari, L. (1984). “Tertiary to quaternary evolution of the volcanism in Aegean Sea,” in The Geological Evolution of the Eastern Mediterranean, Vol. 17, eds J. E. Dixon and A. H. F. Robertson (London: Geological Society of London Special Publications), 687–699. Fytikas, M., and Kolios, N. (1979). “Preliminary heat flow map of Greece,” in Terrestrial Heat Flow in Europe, eds V. Cermak and L. Rybach (Berlin: Springer- Verlag), 197–205. Gattuso, J.-P., and Hansson, L. (2011). “Ocean acidification: background and history,” in Ocean Acidification, eds J.-P. Gattuso and L. Hansson (Oxford: Oxford University Press), 1–20. Gautier, P., Brun, J. P., and Jolivet, L. (1993). Structure and kinematics of upper cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece). Tectonics 12, 1180–1194. doi:10.1029/93TC01131 Giovannelli, D., and Price, R. E. (2018). “Marine shallow-water hydrothermal vents: microbiology,” in Reference Module in Earth Systems and Environmental Frontiers in Marine Science %7C www.frontiersin.org 16 January 2022 %7C Volume 8 %7C Article 775247 Daskalopoulou et al. Shallow Submarine Degassing, Aegean Sea Sciences, Vol. 4, (Amsterdam: Elsevier), 353–363. doi:10.1016/b978-0-12- 409548-9.11250-3 Godelitsas, A., Price, R. E., Pichler, T., Amend, J., Gamaletsos, P., and Göttlicher, J. (2015). Amorphous as-sulfide precipitates from the shallow-water hydrothermal vents off Milos Island (Greece). Mar. Chem. 177, 687–696. doi:10.1016/j.marchem.2015.09.004 Golbuu, Y., Gouezo, M., Kurihara, H., Rehm, L., and Wolanski, E. (2016). Long-term isolation and local adaptation in Palau’s Nikko Bay help corals thrive in acidic waters. Coral Reefs 35, 909–918. doi:10.1007/s00338-016-1457- 5 Gros, J., Schmidt, M., Linke, P., Dötsch, S., Triest, J., Martínez-Cabanas, M., et al. (2021). Quantification of dissolved CO2 plumes at the Goldeneye CO2-release experiment. Int. J. Greenh. Gas Control 109:103387. doi:10.1016/j.ijggc.2021. 103387 Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S., Hoppema, M., et al. (2019). The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363, 1193–1199. Hall-Spencer, J. M., Rodolfo-Metalpa, R.,Martin, S., Ransome, E., Fine, M., Turner, S. M., et al. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99. doi:10.1038/nature07051 HAUGAN, P. M., and Drange, H. (1996). Effects of CO2 on the ocean environment. Energy Convers. Manage. 37, 1019–1022. doi:10.1016/0196-8904(95)00292-8 Heiken, G., and McCoy, F. (1984). Caldera development during the Minoan eruption, Thera, Cyclades, Greece. J. Geophys. Res. 89, 8441–8462. doi:10.1029/ JB089iB10p08441 Hernández, C. A., Sangil, C., and Hernández, J. C. (2016). A new CO2 vent for the study of ocean acidification in the Atlantic. Mar. Pollut. Bull. 109, 419–426. doi:10.1016/j.marpolbul.2016.05.040 Hunziker, J. C., and Marini, L. (2005). The Geology, Geochemistry and Evolution of Nisyros Volcano. Implications for the Volcanic Hazard. Lausanne: Memoires Geologie, 44. IPCC (2005). “IPCC special report on carbon dioxide capture and storage,” in Working Group III of the Intergovernmental Panel on Climate Change, eds B. Metz, O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (Cambridge: Cambridge University Press), 442. IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, eds V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, et al. (Cambridge: Cambridge University Press). Ivarsson, M., Kilias, S. P., Broman, C., Neubeck, A., Drake, H., Chi Fru, E., et al. (2019). Exceptional preservation of fungi as H2-bearing fluid inclusions in an early quaternary paleo-hydrothermal system at Cape Vani, Milos, Greece. Minerals 9:749. doi:10.3390/min9120749 Jiang, L. Q., Carter, B. R., Feely, R. A., Lauvset, S. K., and Olsen, A. (2019). Surface ocean pH and buffer capacity: past, present and future. Sci. Rep. 9:18624. doi:10.1038/s41598-019-55039-4 Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., et al. (2013). Aegean tectonics: strain localisation, slab tearing and trench retreat. Tectonophysics 597–598, 1–33. doi:10.1016/j.tecto.2012.06.011 Joos, F., Frolicher, T. L., Steinacher, M., and Plattner, G.-K. (2011). “Impact of climate change mitigation on ocean acidification projections,” in Ocean Acidification, eds J. P. Gattuso and L. Hansson (Oxford: Oxford University Press), 273–289. Kanellopoulos, C. (2012). Distribution, lithotypes and mineralogical study of newly formed thermogenic travertines in Northern Euboea and Eastern Central Greece. Centr. Eur. J. Geosci. 4, 545–560. doi:10.2478/s13533-012- 0105-z Kanellopoulos, C., Mitropoulos, P., Valsami-Jones, E., and Voudouris, P. (2017). A new terrestrial active mineralizing hydrothermal system associated with orebearing travertines in Greece (northern Euboea Island and Sperchios area). J. Geochem. Explor. 179, 9–24. doi:10.1016/j.gexplo.2017.05.003 Kauffmann, G., Kockel, F., and Mollat, H. (1976). Notes on the stratigraphic and paleogeographic position of the svoula formation in the innermost zone of the Hellenides (Nothern Greece). Bull. Soc. Géol. Fr. 7/18, 225–230. Khimasia, A., Renshaw, C. E., Price, R. E., and Pichler, T. (2021). Hydrothermal flux and porewater geochemistry in Paleochori Bay, Milos, Greece. Chem. Geol. 571:120188. doi:10.1016/j.chemgeo.2021.120188 Khimasia, A., Rovere, A., and Pichler, T. (2020). Hydrothermal areas, microbial mats and sea grass in Paleochori Bay, Milos, Greece. J. Maps 16, 348–356. doi:10.1080/17445647.2020.1748131 Kilias, S. P., Nomikou, P., Papanikolaou, D., Polymenakou, P. N., Godelitsas, A., Argyraki, A., et al. (2013). New insights into hydrothermal vent processes in the unique shallowsubmarine arc-volcano, Kolumbo (Santorini), Greece. Sci. Rep. 3:2421. doi:10.1038/srep02421 Kipfer, R., Aeschbach-Hertig, W., Peeters, F., and Stute, M. (2002). Noble gases in lakes and ground waters. Rev. Mineral. Geochem. 47, 615–700. doi:10.2138/ rmg.2002.47.14 Koch, M., Bowes, G., Ross, C., and Zhang, X.-H. (2012). Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. doi:10.1111/j.1365-2486.2012.02791.x Kockel, F., Mollat, H., and Walther, H. W. (1977). Erlauterungen zur Geologischen Karte der Chalkidiki und Angrenzender Gebiete 1:100.000 (Nord Griechenland). Hannover: Bundesanstalt fur Geowissenschaften und Rohstoffe, 1–119. Kokkalas, S., and Aydin, A. (2013). Is there a link between faulting and magmatism in the south-central Aegean Sea? Geol. Mag. 150, 193–224. doi:10.1017/ S0016756812000453 Kotopouli, C. N., Hatzipanagiotou, K., and Tsikouras, B. (1989). Petrographic and geochemical characteristics of the ophioltic rocks in Northern Samothrace, Greece. Geol. Balc. 19, 61–67. Kreemer, C., Chamot-Rooke, N., and Le Pichon, X. (2004). Constraints on the evolution and vertical coherency of deformation in the Northern Aegean from a comparison of geodetic, geologic and seismologic data. Earth Planet. Sci. Lett. 225, 329–346. doi:10.1016/j.epsl.2004.06.018 Kyriakopoulos, K. (2010). “Natural degassing of carbon dioxide and hydrogen sulphide and its environmental impact at Milos Island, Greece,” in Proceedings of the 12th International Congress, Patras, 2361–2372. La Ruffa, G., Panichi, C., Kavouridis, T., Liberopoulou, V., Leontiadis, J., and Caprai, A. (1999). Isotope and chemical assessment of geothermal potential of Kos island, Greece. Geothermics 28, 205–217. doi:10.1016/S0375-6505(99) 00004-8 Lagios, E., Galanopoulos, D., Hobbs, B. A., and Dawes, G. J. K. (1998). Twodimensional magnetotelluric modelling of the Kos island geothermal region (Greece). Tectonophysics 287, 157–172. doi:10.1016/S0040-1951(98)80066-8 Lauritano, C., Ruocco, M., Dattolo, E., Buia, M. C., Silva, J., Santos, R., et al. (2015). Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents. Biogeoscience 12, 4185–4194. doi:10.5194/bg-12-4185-2015 Lazaridis, G., Melfos, V., and Papadopoulou, L. (2011). The first cave occurrence of orpiment (N. Greece). Int. J. Speleol. 40, 133–139. doi:10.5038/1827-806X.40.2. 6 Le Pichon, X., Lybéris, N., and Alvarez, F. (1987). Discussion on the subsidence of the North Aegean trough: an alternative view. J. Geol. Soc. 144, 349–351. doi:10.1144/gsjgs.144.2.0349 Li Vigni, L., Daskalopoulou, K., Calabrese, S., Kyriakopoulos, K., Parello, F., Brugnone, F., et al. (2021). Geochemical characterisation of the thermo-mineral waters of Greece. Environ. Geochem. Health doi:10.1007/s10653-021-01001-1 Linares, C., Vidal, M., Canals, M., Kersting, D. K., Amblas, D., Aspillaga, E., et al. (2015). Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proc. R. Soc. B Biol. Sci. 282:20150587. doi:10.1098/rspb. 2015.0587 Lister, G. S., Banga, G., and Feenstra, A. (1984). Metamorphic core complexes of cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12, 221–225. doi:10.1130/0091-7613198412<221:MCCOCT<2.0.CO;2 Marini, L., Principe, C., Chiodini, G., Cioni, R., Frytikas, M., and Marinelli, G. (1993). Hydrothermal eruptions of Nisyros (Dodecanese, Greece). Past events and present hazard. J. Volcanol. Geotherm. Res. 56, 71–95. doi:10.1016/0377- 0273(93)90051-R Megalovasilis, P. (2020). Geochemistry of hydrothermal particles in shallow submarine hydrothermal vents on Milos Island, Aegean Sea East Mediterranean. Geochem. Int. 58, 151–181. doi:10.1134/s001670292002007x Mercier, J., Delibassis, N., Gauthier, A., Jarrige, J. J., Lemeille, F., Philip, H., et al. (1979). La néotectonique de l’Arc Egéen. Rev. Géol. Dyn. Géogr. Phys. 21, 67–92. Millero, F., Woosley, R., DiTrolio, B., and Waters, J. (2009). Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22, 72–85. doi:10.5670/oceanog.2009.98 Frontiers in Marine Science %7C www.frontiersin.org 17 January 2022 %7C Volume 8 %7C Article 775247 Daskalopoulou et al. Shallow Submarine Degassing, Aegean Sea Monastersky, R. (2013). Seabed scars raise questions over carbon-storage plan. Nature 504, 339–340. doi:10.1038/504339a Mountrakis, D., Pavlides, S., Chatzipetros, A., Meletidis, S., Tranos, M., Vougioukalakis, G., et al. (1998). “Active deformation in Santorini,” in The European Laboratory Volcanoes, eds R. Casale, M. Fytikas, G. Sigvaldarsson, and G. Vougioukalakis (Brussels: European Commission), 13–22. Mountrakis, D. M. (1985). Geology of Greece. Thessaloniki: University Studio Press, 207. (in Greek). NOAA (2021). National Oceanic & Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division, Trends in Atmospheric Carbon Dioxide. Available online at: https://www.esrl.noaa.gov/gmd/ccgg/ trends/ (accessed December 2021) Oikonomidis, D., and Pavlides, S. (2017). Geological mapping of Santorini Volcanic island (Greece), with the combined use of Pleiades 1A and ENVISAT satellite images. Arab. J. Geosci. 10:175. doi:10.1007/s12517-017-2972-6 Parks, M. M., Caliro, S., Chiodini, G., Pyle, D. M., Mather, T. A., Berlo, K., et al. (2013). Distinguishing contributions to diffuse CO2 emissions in volcanic areas from magmatic degassing and thermal decarbonation using soil gas 222Rn– d13C systematics: application to Santorin volcano, Greece. Earth Planet. Sci. Let. 377–378, 180–190. doi:10.1016/j.epsl.2013.06.046 Patoucheas, P., Koukousioura, O., Psarra, S., Aligizaki, K., Dimiza, M. D., Skampa, E., et al. (2021). Phytoplankton community structure changes during autumn and spring in response to environmental variables in Methana, Saronikos Gulf, Greece. Environ. Sci. Pollut. Res. 28, 33854–33865. doi:10.1007/s11356-020- 12272-z Pavlides, S. B., Valkaniotis, S., Ganas, A., Keramydas, D., and Sboras, S. (2004). The active fault of Atalanti–re-evaluation with new geological data. Bull. Geoll Soc. Greece 36, 1560–1567. (in Greek), Pavlidis, S., Valkaniotis, S., Kurcel, A., Papathanasiou, Y., and Xatzipetrou, A. (2005). Neotectonic structure of Samothraki Island in relation to the North Anatolia fault. Bull. Greek Geol. Soc. 37, 19–28. Pe-Piper, G., and Piper, D. J. W. (1989). Spatial and temporal variation in late cenozoic back-arc volcanic rocks, Aegean Sea Region. Tectonophysics 169, 113–134. doi:10.1016/0040-1951(89)90186-8 Pe-Piper, G., and Piper, D. J. W. (2002). The Igneous Rocks of Greece, The Anatomy of an Orogen. Beiträge zur regionalen Geologie der Erde, Band 30. Berlin: Gebrüder Bornträger. Price, R. E., and Giovannelli, D. (2017). “A review of the geochemistry and microbiology of marine shallow-water hydrothermal vents,” in Reference Module in Earth Systems and Environmental Sciences (Amsterdam: Elsevier). doi:10.1016/B978-0-12-409548-9.09523-3 Price, R. E., Savov, I., Planer-Friedrich, B., Bühring, S. I., Amend, J., and Pichler, T. (2013). Processes influencing extreme as enrichment in shallowsea hydrothermal fluids of Milos island, Greece. Chem. Geol. 348, 15–26. doi:10.1016/j.chemgeo.2012.06.007 Rahders, E., Halbach, P., Halbach, M., Rahner, S., and Varnavas, S. P. (1997). “Hydrothermal alteration and precipitation processes on Methana peninsula, Greece,” in Mineral Deposits: Research and Exploration, Where Do They Meet?, ed. H. Papunen (Rotterdam: Balkema), 965–966. Reid, R. C., Prausnitz, J. M., and Poling, B. E. (1987). The Properties of Gases & Liquids, 4th Edn. Boston, MA: McGraw-Hill. Rigakis, N., Roussos, N., Kamberis, E., and Proedrou, P. (2001). Hydrocarbon gas accumulations in Greece and their origin. Bull. Geol. Soc. Greece 34, 1265–1273. Rizzo, A. L., Caracausi, A., Chavagnac, V., Nomikou, P., Polymenakou, P. N., Mandalakis, M., et al. (2016). Kolumbo submarine volcano (Greece): an active window into the Aegean subduction system. Sci. Rep. 6:28013. doi:10.1038/ srep28013 Rizzo, A. L., Caracausi, A., Chavagnac, V., Nomikou, P., Polymenakou, P. N., Mandalakis, M., et al. (2019). Geochemistry of CO2-rich gases venting from submarine volcanism: the case of kolumbo (Hellenic Volcanic Arc, Greece). Front. Earth Sci. 7:60. doi:10.3389/feart.2019.00060 Roberts, H., Price, R., Brombach, C. C., and Pichler, T. (2021). Mercury in the hydrothermal fluids and gases in Paleochori Bay, Milos, Greece. Mar. Chem. 233:103984. doi:10.1016/j.marchem.2021.103984 Robertson, A. H. F., Clift, P. D., Degnan, P. J., and Jones, G. (1991). “Palaeogeographic and palaeotectonic evolution of the eastern Mediterranean Neotethys,” in Palaeogeography and Paleoceanography of Tethys: Special Issue of Palaeogeography Palaeoecology Palaeoecology, Vol. 87, eds J. E. T. Channell, E. L. Winterer, and L. F. Jansa (Amsterdam: Elsevier), 289–343. Rogelja, M., Cibic, T., Pennesi, C., and De Vittor, C. (2016). Microphytobenthic community composition and primary production at gas and thermal vents in the Aeolian Islands (Tyrrhenian Sea, Italy). Mar. Environ. Res. 118, 31–44. doi:10.1016/j.marenvres.2016.04.009 Russell, G. L., Lacis, A. A., Rind, D. H., Colose, C., and Opstbaum, R. F. (2013). Fast atmosphere-ocean model runs with large changes in CO2. Geophys. Res. Lett. 40, 5787–5792. doi:10.1002/2013GL056755 Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., et al. (2004). The oceanic sink for anthropogenic CO2. Science 305, 367–371. doi:10.1126/science.1097403 Sano, Y., and Marty, B. (1995). Origin of carbon in fumarolic gas from island arcs. Chem. Geol. 119, 265–274. doi:10.1016/0009-2541(94)00097-2 Sano, Y., and Wakita, H. (1985). Geographical distribution of 3He/4He ratios in Japan: implications for arc tectonics and incipient magmatism. J. Geophys. Res. 90, 8729–8741. doi:10.1029/JB090iB10p08729 Sébrier, M. (1977). Tectonique Récente d’une Transversal à l’arc Égéen. Le golfe de Corinthe et ses Regions Périphériques. Ph.D. thesis. Paris: Université Paris XI-Orsay, 137. Shimizu, A., Sumino, H., Nagao, K., Notsu, K., and Mitropoulos, P. (2005). Variation in noble gas isotopic composition of gas samples from the Aegean arc, Greece. J. Volcanol. Geotherm. Res. 140, 321–339. doi:10.1016/j.jvolgeores. 2004.08.016 Sigurdsson, H., Carey, S., Alexandri, M., Vougioukalakis, G., Croff, K., Roman, C., et al. (2006). Marine investigations of Greece’s santorini volcanic field. Eos 87:337. doi:10.1029/2006eo340001 Smith, P. A., and Cronan, D. S. (1983). The geochemistry of metalliferous sediments and waters associated with shallow hydrothermal activity (Santorini, Greece). Mar. Geol. 39, 241–262. doi:10.1016/0009-2541(83) 90017-7 St. Seymour, K., Tsikouras, V., Kotopouli, K., Hatzipanayiotou, K., and Pe-Piper, G. (1996). A window to the operation of microplate tectonics in the tethys ocean: the geochemistry of samothrace granite, Aegean Sea. Mineral. Petrol. 56, 251–272. doi:10.1007/BF01162606 Stefánsson, A., Lemke, K. H., Bènèzeth, P., and Schott, J. (2017). Magnesium bicarbonate and carbonate interactions in aqueous solutions: an infrared spectroscopic and quantum chemical study. Geochim. Cosmochim. Acta 198, 271–284. doi:10.1016/j.gca.2016.10.032 Stefánsson, A., Sveinbjörnsdòttir, A. E., Heinemeier, J., Arnòrsson, S., Kjartansdòttir, R., and Kristmannsdòttir, H. (2016). Mantle CO2 degassing through the Icelandic crust: evidence from carbon isotopes in groundwater. Geochim. Cosmochim. Acta 191, 300–319. doi:10.1016/j.gca.2016.06.038 Stewart, A. L., and McPhie, J. (2006). Facies architecture and Late Ploicene— Pleistocene evolution of a felsic volcanic island, Milo, Greece. Bull. Volcanol. 68, 703–726. Stiros, S. (2000). “Fault pattern of Nisyros island volcano (Aegean Sea, Greece): structural, coastal and archaeological evidence,” in The Archaeology of Geological Catastrophes, Vol. 171, eds B. McGuire, et al. (London: Geological Society of London, Special Publications), 385–397. Symonds, R. B., Gerlach, T. M., and Reed, M. H. (2001). Magmatic gas scrubbing: implications for volcano monitoring. J. Volcanol. Geotherm. Res. 108, 303–341. doi:10.1016/S0377-0273(00)00292-4 Tarasov, V. G., Gebruk, A. V., Mironov, A. N., and Moskalev, L. I. (2005). Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chem. Geol. 224, 5–39. doi:10.1016/j.chemgeo.2005.07.021 Tarchini, L., Carapezza, M. L., Ranaldi, M., Sortino, F., Gattuso, A., and Acocella, V. (2019). Fluid geochemistry contribution to the interpretation of the 2011–2012 unrest of Santorini, Greece, in the frame of the dynamics of the Aegean Volcanic Arc. Tectonics 38, 1033–1049. doi:10.1029/2018TC005377 Tassi, F., Vaselli, O., Papazachos, C. B., Giannini, L., Chiodini, G., Vougioukalakis, G. E., et al. (2013). Geochemical and isotopic changes in the fumarolic and submerged gas discharges during the 2011–2012 unrest at Santorini caldera (Greece). Bull. Volcanol. 75:711. doi:10.1007/s00445-013-0711-8 Taymaz, T., Jackson, J., andMcKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophys. J. Int. 106, 433–490. doi:10.1111/j.1365-246X. 1991.tb03906.x Frontiers in Marine Science %7C www.frontiersin.org 18 January 2022 %7C Volume 8 %7C Article 775247 Daskalopoulou et al. Shallow Submarine Degassing, Aegean Sea Taymaz, T., Yilmaz, Y., and Dilek, Y. (2007). The Geodynamics of the Aegean and Anatolia: Introduction, Vol. 291. London: Geological Society of London, Special Publications, 1–16. Teixidó, N., Caroselli, E., Alliouane, S., Ceccarelli, C., Comeau, S., Gattuso, J. P., et al. (2020). Ocean acidification causes variable trait-shifts in a coral species. Glob. Chang. Biol. 26, 6813–6830. doi:10.1111/gcb.15372 Triantaphyllou, M. V., Baumann, K.-H., Karatsolis, B.-T., Dimiza, M. D., Psarra, S., Skampa, E., et al. (2018). Coccolithophore community response along a natural CO2 gradient off Methana (SW Saronikos Gulf, Greece, NE Mediterranean). PLoS One 13:e0200012. doi:10.1371/journal.pone.0200012 Tzanis, A., Chailas, S., Sakkas, V., and Lagios, E. (2020). Tectonic deformation in the Santorini volcanic complex (Greece) as inferred by joint analysis of gravity, magnetotelluric and DGPS observations. Geophys. J. Int. 220, 461–489. doi:10.1093/gji/ggz461 Vizzini, S., Tomasello, A., Di Maida, G., Pirrotta, M., Mazzola, A., and Calvo, S. (2010). Effect of explosive shallow hydrothermal vents on d13C and growth performance in the seagrass Posidonia oceanica. J. Ecol. 98, 1284–1291. doi:10.1111/j.1365-2745.2010.01730.x Voudouris, P., Kati, M., Magganas, A., Keith, M., Valsami-Jones, E., Haase, K., et al. (2021). Arsenian pyrite and cinnabar from active submarine nearshore vents, Paleochori Bay, Milos Island, Greece. Minerals 11:14. doi:10.3390/ min11010014 Whiticar, M., Faber, E., and Schoell, M. (1986). Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim. Cosmochim. Acta 50, 693–709. doi:10.1016/0016-7037(86)90346-7 Winkel, L. H. E., Casentini, B., Bardelli, F., Voegelin, A., Nikolaidis, N. P., and Charlet, L. (2013). Speciation of arsenic in Greek travertine: co-precipitation of arsenate with calcite. Geochim. Cosmochim. Acta 106, 99–110. doi:10.1016/j. gca.2012.11.049 Yücel, M., Sievert, S. M., Vetriani, C., Foustoukos, D. I., Giovannelli, D., and Le Bris, N. (2013). Eco-geochemical dynamics of a shallow-water hydrothermal vent system at Milos Island, Aegean Sea (Eastern Mediterranean). Chem. Geol. 356, 11–20. doi:10.1016/j.chemgeo.2013.07.020 http://hdl.handle.net/2122/15294 doi:10.3389/fmars.2021.775247 open CO2 emissions submarine gas vents geogenic degassing environmental impac Greek Islands gas flux article 2022 ftingv https://doi.org/10.3389/fmars.2021.775247 https://doi.org/10.1016/j.tecto 2023-01-24T23:26:24Z The concepts of CO2 emission, global warming, climate change, and their environmental impacts are of utmost importance for the understanding and protection of the ecosystems. Among the natural sources of gases into the atmosphere, the contribution of geogenic sources plays a crucial role. However, while subaerial emissions are widely studied, submarine outgassing is not yet well understood. In this study, we review and catalog 122 literature and unpublished data of submarine emissions distributed in ten coastal areas of the Aegean Sea. This catalog includes descriptions of the degassing vents through in situ observations, their chemical and isotopic compositions, and flux estimations. Temperatures and pH data of surface seawaters in four areas affected by submarine degassing are also presented. This overview provides useful information to researchers studying the impact of enhanced seawater CO2 concentrations related either to increasing CO2 levels in the atmosphere or leaking carbon capture and storage systems. Published 775247 6V. Pericolosità vulcanica e contributi alla stima del rischio JCR Journal Article in Journal/Newspaper Ocean acidification Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Frontiers in Marine Science 8