Radon Activity in Volcanic Gases of Mt. Etna by Passive Dosimetry

Radon (222Rn) activity in air was measured for about 6 months at the summit of Mt. Etna Central Crater (Sicily) by integrative radon dosimetry at two different heights above ground level (5 cm and 1 m). This technique for air radon monitoring proved operational in the harsh volcanic environment of M...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Solid Earth
Main Authors: Terray, Luca, Gauthier, Pierre‐Jean, Breton, Vincent, Giammanco, Salvatore, Sigmarsson, Olgeir, Salerno, Giuseppe, Caltabiano, Tommaso, Falvard, Alain
Other Authors: Laboratoire Magmas et Volcans, Université Clermont Auvergne, Aubière, France, Laboratoire de Physique de Clermont,Université Clermont Auvergne, Aubière, France, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia
Format: Article in Journal/Newspaper
Language:English
Published: Wiley Agu 2020
Subjects:
Online Access:http://hdl.handle.net/2122/14176
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JB019149
https://doi.org/10.1029/2019JB019149
id ftingv:oai:www.earth-prints.org:2122/14176
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic 04.08. Volcanology
spellingShingle 04.08. Volcanology
Terray, Luca
Gauthier, Pierre‐Jean
Breton, Vincent
Giammanco, Salvatore
Sigmarsson, Olgeir
Salerno, Giuseppe
Caltabiano, Tommaso
Falvard, Alain
Radon Activity in Volcanic Gases of Mt. Etna by Passive Dosimetry
topic_facet 04.08. Volcanology
description Radon (222Rn) activity in air was measured for about 6 months at the summit of Mt. Etna Central Crater (Sicily) by integrative radon dosimetry at two different heights above ground level (5 cm and 1 m). This technique for air radon monitoring proved operational in the harsh volcanic environment of Mt. Etna summit with a 94% recovery rate of dosimeters. In the southeast sector exposed to the main gas plume, mean radon activity in free air (height 1 m) is significantly higher than the local background and the ground level activity (height 5 cm). The results strongly suggest that the plume is enriched in radon by ≈550 Bq/m3, which has never been evidenced before. Radon activities also reflect soil degassing occurring in the proximity of the crater, with increased ground level activities in zones of enhanced soil fracturing and degassing. Radon measurements also revealed a hot spot in front of the Voragine vent with extraordinary high levels of air activities (26 kBq/m3 at ground level and 8 kBq/m3 in free air). The temporal variation of radon activity was investigated by replacing a few stations half way through the exposure period. The only significant increase was associated with the site located under the main gas plume and correlated with eruptive unrest within the crater. Finally, air radon levels higher than the recommended threshold of 300 Bq/m3 were detected in several zones on the rim and could generate a nonnegligible radiologic dose for workers on the volcano. Published e2019JB019149 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici JCR Journal
author2 Laboratoire Magmas et Volcans, Université Clermont Auvergne, Aubière, France
Laboratoire de Physique de Clermont,Université Clermont Auvergne, Aubière, France
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia
format Article in Journal/Newspaper
author Terray, Luca
Gauthier, Pierre‐Jean
Breton, Vincent
Giammanco, Salvatore
Sigmarsson, Olgeir
Salerno, Giuseppe
Caltabiano, Tommaso
Falvard, Alain
author_facet Terray, Luca
Gauthier, Pierre‐Jean
Breton, Vincent
Giammanco, Salvatore
Sigmarsson, Olgeir
Salerno, Giuseppe
Caltabiano, Tommaso
Falvard, Alain
author_sort Terray, Luca
title Radon Activity in Volcanic Gases of Mt. Etna by Passive Dosimetry
title_short Radon Activity in Volcanic Gases of Mt. Etna by Passive Dosimetry
title_full Radon Activity in Volcanic Gases of Mt. Etna by Passive Dosimetry
title_fullStr Radon Activity in Volcanic Gases of Mt. Etna by Passive Dosimetry
title_full_unstemmed Radon Activity in Volcanic Gases of Mt. Etna by Passive Dosimetry
title_sort radon activity in volcanic gases of mt. etna by passive dosimetry
publisher Wiley Agu
publishDate 2020
url http://hdl.handle.net/2122/14176
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JB019149
https://doi.org/10.1029/2019JB019149
genre Antarctica Journal
genre_facet Antarctica Journal
op_relation Journal of Geophysical Research - Solid Earth
9/125 (2020)
Aiuppa, A., Giudice, G., Gurrieri, S., Liuzzo, M., Burton, M., Caltabiano, T., et al. (2008). Total volatile flux from Mount Etna. Geophysical Research Letters, 35, L24302. https://doi.org/10.1029/2008GL035871 Allard, P., Aiuppa, A., Bani, P., Métrich, N., Bertagnini, A., Gauthier, P.‐J., et al. (2016). Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc. Journal of Volcanology and Geothermal Research, Understanding volcanoes in the Vanuatu arc, 322, 119–143. https://doi.org/10.1016/j.jvolgeores.2015.10.004 Allard, P., Behncke, B., D'Amico, S., Neri, M., & Gambino, S. (2006). Mount Etna 1993–2005: Anatomy of an evolving eruptive cycle. Earth‐ Science Reviews, 78(1–2), 85–114. https://doi.org/10.1016/j.earscirev.2006.04.002 Andres, R., Rose, W., Stoiber, R., Williams, S., Matías, O., & Morales, R. (1993). A summary of sulfur dioxide emission rate measurements from Guatemalan volcanoes. Bulletin of Volcanology, 55(5), 379–388. https://doi.org/10.1007/BF00301150 Berlo, K., Turner, S., Blundy, J., Black, S., & Hawkesworth, C. (2006). Tracing pre‐eruptive magma degassing using (210Pb/226Ra) disequilibria in the volcanic deposits of the 1980–1986 eruption of Mount St. Helens. Earth and Planetary Science Letters, 249(3–4), 337–349. https://doi.org/10.1016/j.epsl.2006.07.018 Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., & Falsaperla, S. (2004). Mt. Etna: Volcano Laboratory (p. 143). Washington DC: American Geophysical Union Geophysical Monograph Series. Chirkov, A. M. (1975). Radon as a possible criterion for predicting eruptions as observed at Karymsky volcano. Bulletin of Volcanology, 39(1), 126–131. https://doi.org/10.1007/BF02596952 Cigolini, C., Laiolo, M., Coppola, D., Trovato, C., & Borgogno, G. (2016). Radon surveys and monitoring at active volcanoes: Learning from Vesuvius, Stromboli, La Soufrière and Villarrica. Geological Society, London, Special Publications, 451(1), 183–208. https://doi.org/ 10.1144/SP451.1 Condomines, M., Sigmarsson, O., & Gauthier, P. J. (2010). A simple model of 222Rn accumulation leading to 210Pb excesses in volcanic rocks. Earth and Planetary Science Letters, 293(3–4), 331–338. https://doi.org/10.1016/j.epsl.2010.02.048 Corsaro, R. A., Andronico, D., Behncke, B., Branca, S., Caltabiano, T., Ciancitto, F., et al. (2017). Monitoring the December 2015 summit eruptions of Mt. Etna (Italy): Implications on eruptive dynamics. Journal of Volcanology and Geothermal Research, 341, 53–69. https:// doi.org/10.1016/j.jvolgeores.2017.04.018 De Beni, E., Cantarero, M., & Messina, A. (2019). UAVs for volcano monitoring: A new approach applied on an active lava flow on Mt. Etna (Italy), during the 27 February–02 March 2017 eruption. Journal of Volcanology and Geothermal Research, 369, 250–262. https://doi.org/ 10.1016/j.jvolgeores.2018.12.001 De Novellis, V., Atzori, S., Luca, C. D., Manzo, M., Valerio, E., Bonano, M., et al. (2019). DInSAR analysis and analytical modeling of Mount Etna displacements: The December 2018 volcano‐tectonic crisis. Geophysical Research Letters, 46, 5817–5827. https://doi.org/10.1029/ 2019GL082467 Delmelle, P., Stix, J., Baxter, P., Garcia‐Alvarez, J., & Barquero, J. (2002). Atmospheric dispersion, environmental effects and potential health hazard associated with the low‐altitude gas plume of Masaya volcano, Nicaragua. Bulletin of Volcanology, 64(6), 423–434. https:// doi.org/10.1007/s00445-002-0221-6 EURATOM (2014). European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. OJ of the EU. L13. (Vol. 57, pp. 1–73). Gauthier, P.‐J., & Condomines, M. (1999). 210Pb–226Ra radioactive disequilibria in recent lavas and radon degassing: Inferences on the magma chamber dynamics at Stromboli and Merapi volcanoes. Earth and Planetary Science Letters, 172(1–2), 111–126. https://doi.org/ 10.1016/S0012-821X(99)00195-8 Gauthier, P.‐J., Condomines, M., & Hammouda, T. (1999). An experimental investigation of radon diffusion in an anhydrous andesitic melt at atmospheric pressure: Implications for radon degassing from erupting magmas. Geochimica et Cosmochimica Acta, 63(5), 645–656. https://doi.org/10.1016/S0016-7037(98)00305-6 Gauthier, P.‐J., Le Cloarec, M.‐F., & Condomines, M. (2000). Degassing processes at Stromboli volcano inferred from short‐lived disequilibria (210Pb–210Bi–210Po) in volcanic gases. Journal of Volcanology and Geothermal Research, 102(1–2), 1–19. https://doi.org/10.1016/ S0377-0273(00)00179-7 Gauthier, P.‐J., Sigmarsson, O., Gouhier, M., Haddadi, B., & Moune, S. (2016). Elevated gas flux and trace metal degassing from the 2014– 2015 fissure eruption at the Bárðarbunga volcanic system, Iceland. Journal of Geophysical Research: Solid Earth, 121, 1610–1630. https:// doi.org/10.1002/2015JB012111 Giammanco, S., Melián, G., Neri, M., Hernández, P. A., Sortino, F., Barrancos, J., et al. (2016). Active tectonic features and structural dynamics of the summit area of Mt. Etna (Italy) revealed by soil CO2 and soil temperature surveying. Journal of Volcanology and Geothermal Research, 311, 79–98. https://doi.org/10.1016/j.jvolgeores.2016.01.004 Giammanco, S., Sims, K. W. W., & Neri, M. (2007). Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture. Geochemistry, Geophysics, Geosystems, 8, Q10001. https://doi.org/10.1029/2007GC001644 Gill, J., Williams, R., & Bruland, K. (1985). Eruption of basalt and andesite lava degasses 222Rn and 210Po. Geophysical Research Letters, 12(1), 17–20. https://doi.org/10.1029/GL012i001p00017 Hansell, A., & Oppenheimer, C. (2004). Health hazards from volcanic gases: A systematic literature review. Archives of Environmental Health: An International Journal, 59(12), 628–639. https://doi.org/10.1080/00039890409602947 INGV‐OE (2018). Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna del 28/08/2018. Catania: INGV. Jacobi, W., & André, K. (1963). The vertical distribution of radon 222, radon 220 and their decay products in the atmosphere. Journal of Geophysical Research, 68, 3799–3814. https://doi.org/10.1029/JZ068i013p03799 Kojima, H. (1996). The equilibrium factor between radon and its daughters in the lower atmosphere. Environment International, 22, 187–192. https://doi.org/10.1016/s0160‐4120(96)00107‐9 Lambert, G., Bristeau, P., & Polian, G. (1976). Emission and enrichments of radon daughters from Etna Volcano magma. Geophysical Research Letters, 3(12), 724–726. https://doi.org/10.1029/GL003i012p00724 Lambert, G., Le Cloarec, M. F., Ardouin, B., & Le Roulley, J. C. (1985). Volcanic emission of radionuclides and magma dynamics. Earth and Planetary Science Letters, 76(1–2), 185–192. https://doi.org/10.1016/0012-821X(85)90158-X Le Cloarec, M.‐F., & Gauthier, P.‐J. (2003). Merapi Volcano, Central Java Indonesia: A case study of radionuclide behavior in volcanic gases and its implications for magma dynamics at andesitic volcanoes: RADIONUCLIDE BEHAVIOR IN VOLCANIC GASES. Journal of Geophysical Research, 108(B5), 2243. https://doi.org/10.1029/2001JB001709 Le Cloarec, M. F., & Pennisi, M. (2001). Radionuclides and sulfur content in Mount Etna plume in 1983–1995: New constraints on the magma feeding system. Journal of Volcanology and Geothermal Research, 108(1–4), 141–155. https://doi.org/10.1016/S0377-0273(00) 00282-1 Liotta, M., Paonita, A., Caracausi, A., Martelli, M., Rizzo, A., & Favara, R. (2010). Hydrothermal processes governing the geochemistry of the crater fumaroles at Mount Etna volcano (Italy). Chemical Geology, 278(1–2), 92–104. https://doi.org/10.1016/j.chemgeo.2010.09.004 Lubin, J. H., Boice, J. D., Edling, C., Hornung, R. W., Howe, G. R., Kunz, E., et al. (1995). Lung cancer in radon‐exposed miners and estimation of risk from indoor exposure. Journal of the National Cancer Institute, 87(11), 817–827. https://doi.org/10.1093/jnci/87.11.817 Marchese, F., Genzano, N., Neri, M., Falconieri, A., Mazzeo, G., & Pergola, N. (2019). A multi‐channel algorithm for mapping volcanic thermal anomalies by means of Sentinel‐2 MSI and Landsat‐8 OLI data. Remote Sensing, 11(23), 2876. https://doi.org/10.3390/ rs11232876 Marchese, F., Neri, M., Falconieri, A., Lacava, T., Mazzeo, G., Pergola, N., & Tramutoli, V. (2018). The contribution of multi‐sensor infrared satellite observations to monitor Mt. Etna (Italy) activity during May to August 2016. Remote Sensing 10, 10(12), 1948. https://doi.org/ 10.3390/rs10121948 Mollo, S., Tuccimei, P., Soligo, M., Galli, G., & Scarlato, P. (2018). taChapter 18—Advancements in understanding the radon signal in volcanic areas: A laboratory approach based on rock physicochemical changes. In P. Samui, D. Kim, & C. Ghosh (Eds.), Integrating Disaster Science and Management (pp. 309–328). Amsterdam: Elsevier. Monnin, M. M. (2001). Radon over volcanic and seismic areas. In M. V. Frontasyeva, V. P. Perelygin, & P. Vater (Eds.), Radionuclides and heavy metals in environment (pp. 319–330). Dordrecht: NATO Science Series. Springer Netherlands. Morales‐Simfors, N., Wyss, R. A., & Bundschuh, J. (2020). Recent progress in radon‐based monitoring as seismic and volcanic precursor: A critical review. Critical Reviews in Environmental Science and Technology, 50(10), 979–1012. https://doi.org/10.1080/ 10643389.2019.1642833 Neri, M., Ferrera, E., Giammanco, S., Currenti, G., Cirrincione, R., Patanè, G., & Zanon, V. (2016). Soil radon measurements as a potential tracer of tectonic and volcanic activity. Scientific Reports, 6(1), 24581. https://doi.org/10.1038/srep24581 Neri, M., Maio, M. D., Crepaldi, S., Suozzi, E., Lavy, M., Marchionatti, F., et al. (2017). Topographic maps of Mount Etna's summit craters, updated to December 2015. Journal of Maps, 13(2), 674–683. https://doi.org/10.1080/17445647.2017.1352041 Paquet, F., Bailey, M. R., Leggett, R. W., Lipsztein, J., Marsh, J., Fell, T. P., et al. (2017). ICRP publication 137: Occupational intakes of radionuclides: Part 3. Annals of the ICRP, 46(3–4), 1–486. https://doi.org/10.1177/0146645317734963 Polian, G., & Lambert, G. (1979). Radon daughters and sulfur output from Erebus volcano, Antarctica. Journal of Volcanology and Geothermal Research, 6(1–2), 125–137. https://doi.org/10.1016/0377‐0273(79)90050‐7 Salerno, G. G., Burton, M. R., Oppenheimer, C., Caltabiano, T., Randazzo, D., Bruno, N., & Longo, V. (2009a). Three‐years of SO2 flux measurements of Mt. Etna using an automated UV scanner array: Comparison with conventional traverses and uncertainties in flux retrieval. Journal of Volcanology and Geothermal Research, 183(1–2), 76–83. https://doi.org/10.1016/j.jvolgeores.2009.02.013 Sato, K., Kaneoka, I., & Sato, J. (1980). Rare‐gas releasing experiments and Rn degassing from erupting magma. Geochemical Journal, 14(2), 91–94. https://doi.org/10.2343/geochemj.14.91 Scollo, S., Prestifilippo, M., Pecora, E., Corradini, S., Merucci, L., Spata, G., & Coltelli, M. (2014). Eruption column height estimation of the 2011–2013 Etna lava fountains. Annals of Geophysics, 57, 0214. https://doi.org/10.4401/ag-6396 Seidel, J. L., & Monnin, M. (1984). Mesures de Radon‐222 dans le sol de l'Etna (Sicile): 1980–1983. Bulletin of Volcanology, 47(4), 1071–1077. https://doi.org/10.1007/BF01952363 Sigmarsson, O., Condomines, M., & Gauthier, P.‐J. (2015). Excess 210Po in 2010 Eyjafjallajökull tephra (Iceland): Evidence for pre‐eruptive gas accumulation. Earth and Planetary Science Letters, 427, 66–73. https://doi.org/10.1016/j.epsl.2015.06.054 Terray, L., Gauthier, P.‐J., Salerno, G., Caltabiano, T., La Spina, A., Sellitto, P., & Briole, P. (2018). A new degassing model to infer magma dynamics from radioactive disequilibria in volcanic plumes. Geosciences, 8(1), 27. https://doi.org/10.3390/geosciences8010027 Terray, L., Royer, L., Sarramia, D., Achard, C., Bourdeau, E., Chardon, P., et al. (2020). From sensor to cloud: An IoT network of radon outdoor probes to monitor active volcanoes. Sensors, 20(10), 2755. https://doi.org/10.3390/s20102755 Tokonami, S., Iimoto, T., & Kurosawa, R. (1996). Continuous measurement of the equilibrium factor F and the unattached fraction fp of radon progeny in the environment. Environment International, 22, 611–616. https://doi.org/10.1016/S0160-4120(96)00163-8 UNSCEAR (2010). Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2008 Report, Volume I: Report to the General Assembly, with Scientific Annexes A and B—Sources. New York: ONU. https:// doi.org/10.18356/cb7b6e26-en Vaupotič, J., Žvab, P., & Giammanco, S. (2010). Radon in outdoor air in the Mt. Etna area, Italy. Nukleonika, 55(4), 573–577. Zimmer, M., & Erzinger, J. (2003). Continuous H2O, CO2, 222Rn and temperature measurements on Merapi Volcano, Indonesia. Journal of Volcanology and Geothermal Research, 125, 25–38. https://doi.org/10.1016/S0377-0273(03)00087-8 Campion, R., Salerno, G. G., Coheur, P.‐F., Hurtmans, D., Clarisse, L., Kazahaya, K., et al. (2010). Measuring volcanic degassing of SO2 in the lower troposphere with ASTER band ratios. Journal of Volcanology and Geothermal Research, 194(1–3), 42–54. https://doi.org/ 10.1016/j.jvolgeores.2010.04.010 Salerno, G. G., Burton, M., Di Grazia, G., Caltabiano, T., & Oppenheimer, C. (2018). Coupling between magmatic degassing and volcanic tremor in basaltic volcanism. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00157 Salerno, G. G., Burton, M. R., Oppenheimer, C., Caltabiano, T., Tsanev, V. I., & Bruno, N. (2009b). Novel retrieval of volcanic SO2 abundance from ultraviolet spectra. Journal of Volcanology and Geothermal Research, 181(1–2), 141–153. https://doi.org/10.1016/j. jvolgeores.2009.01.009 Wu, Z., Huang, N. E., Long, S. R., & Peng, C.‐K. (2007). On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences, 104(38), 14,889–14,894. https://doi.org/10.1073/pnas.0701020104
0148-0227
http://hdl.handle.net/2122/14176
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JB019149
doi:10.1029/2019JB019149
op_rights open
op_doi https://doi.org/10.1029/2019JB019149
https://doi.org/10.1029/2008GL035871
container_title Journal of Geophysical Research: Solid Earth
container_volume 125
container_issue 9
_version_ 1766287266018230272
spelling ftingv:oai:www.earth-prints.org:2122/14176 2023-05-15T14:14:54+02:00 Radon Activity in Volcanic Gases of Mt. Etna by Passive Dosimetry Terray, Luca Gauthier, Pierre‐Jean Breton, Vincent Giammanco, Salvatore Sigmarsson, Olgeir Salerno, Giuseppe Caltabiano, Tommaso Falvard, Alain Laboratoire Magmas et Volcans, Université Clermont Auvergne, Aubière, France Laboratoire de Physique de Clermont,Université Clermont Auvergne, Aubière, France Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione OE, Catania, Italia 2020-09 http://hdl.handle.net/2122/14176 https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JB019149 https://doi.org/10.1029/2019JB019149 en eng Wiley Agu Journal of Geophysical Research - Solid Earth 9/125 (2020) Aiuppa, A., Giudice, G., Gurrieri, S., Liuzzo, M., Burton, M., Caltabiano, T., et al. (2008). Total volatile flux from Mount Etna. Geophysical Research Letters, 35, L24302. https://doi.org/10.1029/2008GL035871 Allard, P., Aiuppa, A., Bani, P., Métrich, N., Bertagnini, A., Gauthier, P.‐J., et al. (2016). Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc. Journal of Volcanology and Geothermal Research, Understanding volcanoes in the Vanuatu arc, 322, 119–143. https://doi.org/10.1016/j.jvolgeores.2015.10.004 Allard, P., Behncke, B., D'Amico, S., Neri, M., & Gambino, S. (2006). Mount Etna 1993–2005: Anatomy of an evolving eruptive cycle. Earth‐ Science Reviews, 78(1–2), 85–114. https://doi.org/10.1016/j.earscirev.2006.04.002 Andres, R., Rose, W., Stoiber, R., Williams, S., Matías, O., & Morales, R. (1993). A summary of sulfur dioxide emission rate measurements from Guatemalan volcanoes. Bulletin of Volcanology, 55(5), 379–388. https://doi.org/10.1007/BF00301150 Berlo, K., Turner, S., Blundy, J., Black, S., & Hawkesworth, C. (2006). Tracing pre‐eruptive magma degassing using (210Pb/226Ra) disequilibria in the volcanic deposits of the 1980–1986 eruption of Mount St. Helens. Earth and Planetary Science Letters, 249(3–4), 337–349. https://doi.org/10.1016/j.epsl.2006.07.018 Bonaccorso, A., Calvari, S., Coltelli, M., Del Negro, C., & Falsaperla, S. (2004). Mt. Etna: Volcano Laboratory (p. 143). Washington DC: American Geophysical Union Geophysical Monograph Series. Chirkov, A. M. (1975). Radon as a possible criterion for predicting eruptions as observed at Karymsky volcano. Bulletin of Volcanology, 39(1), 126–131. https://doi.org/10.1007/BF02596952 Cigolini, C., Laiolo, M., Coppola, D., Trovato, C., & Borgogno, G. (2016). Radon surveys and monitoring at active volcanoes: Learning from Vesuvius, Stromboli, La Soufrière and Villarrica. Geological Society, London, Special Publications, 451(1), 183–208. https://doi.org/ 10.1144/SP451.1 Condomines, M., Sigmarsson, O., & Gauthier, P. J. (2010). A simple model of 222Rn accumulation leading to 210Pb excesses in volcanic rocks. Earth and Planetary Science Letters, 293(3–4), 331–338. https://doi.org/10.1016/j.epsl.2010.02.048 Corsaro, R. A., Andronico, D., Behncke, B., Branca, S., Caltabiano, T., Ciancitto, F., et al. (2017). Monitoring the December 2015 summit eruptions of Mt. Etna (Italy): Implications on eruptive dynamics. Journal of Volcanology and Geothermal Research, 341, 53–69. https:// doi.org/10.1016/j.jvolgeores.2017.04.018 De Beni, E., Cantarero, M., & Messina, A. (2019). UAVs for volcano monitoring: A new approach applied on an active lava flow on Mt. Etna (Italy), during the 27 February–02 March 2017 eruption. Journal of Volcanology and Geothermal Research, 369, 250–262. https://doi.org/ 10.1016/j.jvolgeores.2018.12.001 De Novellis, V., Atzori, S., Luca, C. D., Manzo, M., Valerio, E., Bonano, M., et al. (2019). DInSAR analysis and analytical modeling of Mount Etna displacements: The December 2018 volcano‐tectonic crisis. Geophysical Research Letters, 46, 5817–5827. https://doi.org/10.1029/ 2019GL082467 Delmelle, P., Stix, J., Baxter, P., Garcia‐Alvarez, J., & Barquero, J. (2002). Atmospheric dispersion, environmental effects and potential health hazard associated with the low‐altitude gas plume of Masaya volcano, Nicaragua. Bulletin of Volcanology, 64(6), 423–434. https:// doi.org/10.1007/s00445-002-0221-6 EURATOM (2014). European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. OJ of the EU. L13. (Vol. 57, pp. 1–73). Gauthier, P.‐J., & Condomines, M. (1999). 210Pb–226Ra radioactive disequilibria in recent lavas and radon degassing: Inferences on the magma chamber dynamics at Stromboli and Merapi volcanoes. Earth and Planetary Science Letters, 172(1–2), 111–126. https://doi.org/ 10.1016/S0012-821X(99)00195-8 Gauthier, P.‐J., Condomines, M., & Hammouda, T. (1999). An experimental investigation of radon diffusion in an anhydrous andesitic melt at atmospheric pressure: Implications for radon degassing from erupting magmas. Geochimica et Cosmochimica Acta, 63(5), 645–656. https://doi.org/10.1016/S0016-7037(98)00305-6 Gauthier, P.‐J., Le Cloarec, M.‐F., & Condomines, M. (2000). Degassing processes at Stromboli volcano inferred from short‐lived disequilibria (210Pb–210Bi–210Po) in volcanic gases. Journal of Volcanology and Geothermal Research, 102(1–2), 1–19. https://doi.org/10.1016/ S0377-0273(00)00179-7 Gauthier, P.‐J., Sigmarsson, O., Gouhier, M., Haddadi, B., & Moune, S. (2016). Elevated gas flux and trace metal degassing from the 2014– 2015 fissure eruption at the Bárðarbunga volcanic system, Iceland. Journal of Geophysical Research: Solid Earth, 121, 1610–1630. https:// doi.org/10.1002/2015JB012111 Giammanco, S., Melián, G., Neri, M., Hernández, P. A., Sortino, F., Barrancos, J., et al. (2016). Active tectonic features and structural dynamics of the summit area of Mt. Etna (Italy) revealed by soil CO2 and soil temperature surveying. Journal of Volcanology and Geothermal Research, 311, 79–98. https://doi.org/10.1016/j.jvolgeores.2016.01.004 Giammanco, S., Sims, K. W. W., & Neri, M. (2007). Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): Implications for gas transport and shallow ground fracture. Geochemistry, Geophysics, Geosystems, 8, Q10001. https://doi.org/10.1029/2007GC001644 Gill, J., Williams, R., & Bruland, K. (1985). Eruption of basalt and andesite lava degasses 222Rn and 210Po. Geophysical Research Letters, 12(1), 17–20. https://doi.org/10.1029/GL012i001p00017 Hansell, A., & Oppenheimer, C. (2004). Health hazards from volcanic gases: A systematic literature review. Archives of Environmental Health: An International Journal, 59(12), 628–639. https://doi.org/10.1080/00039890409602947 INGV‐OE (2018). Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna del 28/08/2018. Catania: INGV. Jacobi, W., & André, K. (1963). The vertical distribution of radon 222, radon 220 and their decay products in the atmosphere. Journal of Geophysical Research, 68, 3799–3814. https://doi.org/10.1029/JZ068i013p03799 Kojima, H. (1996). The equilibrium factor between radon and its daughters in the lower atmosphere. Environment International, 22, 187–192. https://doi.org/10.1016/s0160‐4120(96)00107‐9 Lambert, G., Bristeau, P., & Polian, G. (1976). Emission and enrichments of radon daughters from Etna Volcano magma. Geophysical Research Letters, 3(12), 724–726. https://doi.org/10.1029/GL003i012p00724 Lambert, G., Le Cloarec, M. F., Ardouin, B., & Le Roulley, J. C. (1985). Volcanic emission of radionuclides and magma dynamics. Earth and Planetary Science Letters, 76(1–2), 185–192. https://doi.org/10.1016/0012-821X(85)90158-X Le Cloarec, M.‐F., & Gauthier, P.‐J. (2003). Merapi Volcano, Central Java Indonesia: A case study of radionuclide behavior in volcanic gases and its implications for magma dynamics at andesitic volcanoes: RADIONUCLIDE BEHAVIOR IN VOLCANIC GASES. Journal of Geophysical Research, 108(B5), 2243. https://doi.org/10.1029/2001JB001709 Le Cloarec, M. F., & Pennisi, M. (2001). Radionuclides and sulfur content in Mount Etna plume in 1983–1995: New constraints on the magma feeding system. Journal of Volcanology and Geothermal Research, 108(1–4), 141–155. https://doi.org/10.1016/S0377-0273(00) 00282-1 Liotta, M., Paonita, A., Caracausi, A., Martelli, M., Rizzo, A., & Favara, R. (2010). Hydrothermal processes governing the geochemistry of the crater fumaroles at Mount Etna volcano (Italy). Chemical Geology, 278(1–2), 92–104. https://doi.org/10.1016/j.chemgeo.2010.09.004 Lubin, J. H., Boice, J. D., Edling, C., Hornung, R. W., Howe, G. R., Kunz, E., et al. (1995). Lung cancer in radon‐exposed miners and estimation of risk from indoor exposure. Journal of the National Cancer Institute, 87(11), 817–827. https://doi.org/10.1093/jnci/87.11.817 Marchese, F., Genzano, N., Neri, M., Falconieri, A., Mazzeo, G., & Pergola, N. (2019). A multi‐channel algorithm for mapping volcanic thermal anomalies by means of Sentinel‐2 MSI and Landsat‐8 OLI data. Remote Sensing, 11(23), 2876. https://doi.org/10.3390/ rs11232876 Marchese, F., Neri, M., Falconieri, A., Lacava, T., Mazzeo, G., Pergola, N., & Tramutoli, V. (2018). The contribution of multi‐sensor infrared satellite observations to monitor Mt. Etna (Italy) activity during May to August 2016. Remote Sensing 10, 10(12), 1948. https://doi.org/ 10.3390/rs10121948 Mollo, S., Tuccimei, P., Soligo, M., Galli, G., & Scarlato, P. (2018). taChapter 18—Advancements in understanding the radon signal in volcanic areas: A laboratory approach based on rock physicochemical changes. In P. Samui, D. Kim, & C. Ghosh (Eds.), Integrating Disaster Science and Management (pp. 309–328). Amsterdam: Elsevier. Monnin, M. M. (2001). Radon over volcanic and seismic areas. In M. V. Frontasyeva, V. P. Perelygin, & P. Vater (Eds.), Radionuclides and heavy metals in environment (pp. 319–330). Dordrecht: NATO Science Series. Springer Netherlands. Morales‐Simfors, N., Wyss, R. A., & Bundschuh, J. (2020). Recent progress in radon‐based monitoring as seismic and volcanic precursor: A critical review. Critical Reviews in Environmental Science and Technology, 50(10), 979–1012. https://doi.org/10.1080/ 10643389.2019.1642833 Neri, M., Ferrera, E., Giammanco, S., Currenti, G., Cirrincione, R., Patanè, G., & Zanon, V. (2016). Soil radon measurements as a potential tracer of tectonic and volcanic activity. Scientific Reports, 6(1), 24581. https://doi.org/10.1038/srep24581 Neri, M., Maio, M. D., Crepaldi, S., Suozzi, E., Lavy, M., Marchionatti, F., et al. (2017). Topographic maps of Mount Etna's summit craters, updated to December 2015. Journal of Maps, 13(2), 674–683. https://doi.org/10.1080/17445647.2017.1352041 Paquet, F., Bailey, M. R., Leggett, R. W., Lipsztein, J., Marsh, J., Fell, T. P., et al. (2017). ICRP publication 137: Occupational intakes of radionuclides: Part 3. Annals of the ICRP, 46(3–4), 1–486. https://doi.org/10.1177/0146645317734963 Polian, G., & Lambert, G. (1979). Radon daughters and sulfur output from Erebus volcano, Antarctica. Journal of Volcanology and Geothermal Research, 6(1–2), 125–137. https://doi.org/10.1016/0377‐0273(79)90050‐7 Salerno, G. G., Burton, M. R., Oppenheimer, C., Caltabiano, T., Randazzo, D., Bruno, N., & Longo, V. (2009a). Three‐years of SO2 flux measurements of Mt. Etna using an automated UV scanner array: Comparison with conventional traverses and uncertainties in flux retrieval. Journal of Volcanology and Geothermal Research, 183(1–2), 76–83. https://doi.org/10.1016/j.jvolgeores.2009.02.013 Sato, K., Kaneoka, I., & Sato, J. (1980). Rare‐gas releasing experiments and Rn degassing from erupting magma. Geochemical Journal, 14(2), 91–94. https://doi.org/10.2343/geochemj.14.91 Scollo, S., Prestifilippo, M., Pecora, E., Corradini, S., Merucci, L., Spata, G., & Coltelli, M. (2014). Eruption column height estimation of the 2011–2013 Etna lava fountains. Annals of Geophysics, 57, 0214. https://doi.org/10.4401/ag-6396 Seidel, J. L., & Monnin, M. (1984). Mesures de Radon‐222 dans le sol de l'Etna (Sicile): 1980–1983. Bulletin of Volcanology, 47(4), 1071–1077. https://doi.org/10.1007/BF01952363 Sigmarsson, O., Condomines, M., & Gauthier, P.‐J. (2015). Excess 210Po in 2010 Eyjafjallajökull tephra (Iceland): Evidence for pre‐eruptive gas accumulation. Earth and Planetary Science Letters, 427, 66–73. https://doi.org/10.1016/j.epsl.2015.06.054 Terray, L., Gauthier, P.‐J., Salerno, G., Caltabiano, T., La Spina, A., Sellitto, P., & Briole, P. (2018). A new degassing model to infer magma dynamics from radioactive disequilibria in volcanic plumes. Geosciences, 8(1), 27. https://doi.org/10.3390/geosciences8010027 Terray, L., Royer, L., Sarramia, D., Achard, C., Bourdeau, E., Chardon, P., et al. (2020). From sensor to cloud: An IoT network of radon outdoor probes to monitor active volcanoes. Sensors, 20(10), 2755. https://doi.org/10.3390/s20102755 Tokonami, S., Iimoto, T., & Kurosawa, R. (1996). Continuous measurement of the equilibrium factor F and the unattached fraction fp of radon progeny in the environment. Environment International, 22, 611–616. https://doi.org/10.1016/S0160-4120(96)00163-8 UNSCEAR (2010). Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2008 Report, Volume I: Report to the General Assembly, with Scientific Annexes A and B—Sources. New York: ONU. https:// doi.org/10.18356/cb7b6e26-en Vaupotič, J., Žvab, P., & Giammanco, S. (2010). Radon in outdoor air in the Mt. Etna area, Italy. Nukleonika, 55(4), 573–577. Zimmer, M., & Erzinger, J. (2003). Continuous H2O, CO2, 222Rn and temperature measurements on Merapi Volcano, Indonesia. Journal of Volcanology and Geothermal Research, 125, 25–38. https://doi.org/10.1016/S0377-0273(03)00087-8 Campion, R., Salerno, G. G., Coheur, P.‐F., Hurtmans, D., Clarisse, L., Kazahaya, K., et al. (2010). Measuring volcanic degassing of SO2 in the lower troposphere with ASTER band ratios. Journal of Volcanology and Geothermal Research, 194(1–3), 42–54. https://doi.org/ 10.1016/j.jvolgeores.2010.04.010 Salerno, G. G., Burton, M., Di Grazia, G., Caltabiano, T., & Oppenheimer, C. (2018). Coupling between magmatic degassing and volcanic tremor in basaltic volcanism. Frontiers in Earth Science, 6. https://doi.org/10.3389/feart.2018.00157 Salerno, G. G., Burton, M. R., Oppenheimer, C., Caltabiano, T., Tsanev, V. I., & Bruno, N. (2009b). Novel retrieval of volcanic SO2 abundance from ultraviolet spectra. Journal of Volcanology and Geothermal Research, 181(1–2), 141–153. https://doi.org/10.1016/j. jvolgeores.2009.01.009 Wu, Z., Huang, N. E., Long, S. R., & Peng, C.‐K. (2007). On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences, 104(38), 14,889–14,894. https://doi.org/10.1073/pnas.0701020104 0148-0227 http://hdl.handle.net/2122/14176 https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JB019149 doi:10.1029/2019JB019149 open 04.08. Volcanology article 2020 ftingv https://doi.org/10.1029/2019JB019149 https://doi.org/10.1029/2008GL035871 2022-07-29T06:08:19Z Radon (222Rn) activity in air was measured for about 6 months at the summit of Mt. Etna Central Crater (Sicily) by integrative radon dosimetry at two different heights above ground level (5 cm and 1 m). This technique for air radon monitoring proved operational in the harsh volcanic environment of Mt. Etna summit with a 94% recovery rate of dosimeters. In the southeast sector exposed to the main gas plume, mean radon activity in free air (height 1 m) is significantly higher than the local background and the ground level activity (height 5 cm). The results strongly suggest that the plume is enriched in radon by ≈550 Bq/m3, which has never been evidenced before. Radon activities also reflect soil degassing occurring in the proximity of the crater, with increased ground level activities in zones of enhanced soil fracturing and degassing. Radon measurements also revealed a hot spot in front of the Voragine vent with extraordinary high levels of air activities (26 kBq/m3 at ground level and 8 kBq/m3 in free air). The temporal variation of radon activity was investigated by replacing a few stations half way through the exposure period. The only significant increase was associated with the site located under the main gas plume and correlated with eruptive unrest within the crater. Finally, air radon levels higher than the recommended threshold of 300 Bq/m3 were detected in several zones on the rim and could generate a nonnegligible radiologic dose for workers on the volcano. Published e2019JB019149 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici JCR Journal Article in Journal/Newspaper Antarctica Journal Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Journal of Geophysical Research: Solid Earth 125 9