Updated Antarctic crustal model

We use seismic data together with a subglacial bedrock relief from the BEDMAP2 database to obtain a new three- layer model of the consolidated (crystalline) crust of Antarctica that locally improves the global seismic crustal model CRUST1.0. We collect suitable data for constructing crustal layers,...

Full description

Bibliographic Details
Published in:Gondwana Research
Main Authors: Baranov, A., Tenzer, R, Morelli, Andrea
Other Authors: Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2021
Subjects:
Online Access:http://hdl.handle.net/2122/14122
https://doi.org/10.1016/j.gr.2020.08.010
id ftingv:oai:www.earth-prints.org:2122/14122
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Crustal structure
Sediments
Antarctica
Gondwana
04.06. Seismology
spellingShingle Crustal structure
Sediments
Antarctica
Gondwana
04.06. Seismology
Baranov, A.
Tenzer, R
Morelli, Andrea
Updated Antarctic crustal model
topic_facet Crustal structure
Sediments
Antarctica
Gondwana
04.06. Seismology
description We use seismic data together with a subglacial bedrock relief from the BEDMAP2 database to obtain a new three- layer model of the consolidated (crystalline) crust of Antarctica that locally improves the global seismic crustal model CRUST1.0. We collect suitable data for constructing crustal layers, analyse them and build maps of the crustal layer thickness and seismic velocities. We use the subglacial relief according to a tectonic configuration and then interpolate data using a statistical kriging method. The P-wave velocity information from old seismic profiles have been supplemented with the new shear-wave velocity models. We adjust the thickness of crustal layers by multiplying a total crustal thickness by a percentage ratio of each individual layer at each point. Our re- sults reveal large variations in seismic velocities between different crustal blocks forming Antarctica. The most pronounced differences exist between East and West Antarctica. In East Antarctica, a high P-wave velocity (vP > 7 km/s) layer in the lower crust is absent. The P-wave velocity in the lower crust changes from 6.1 km/s beneath the Lambert Rift to 6.9 km/s beneath the Wilkes Basin. In West Antarctica, a thick mafic lower crust is characterized by large P-wave velocities, ranging from 7.0 km/s under the Ross Sea to 7.3 km/s under the Byrd Basin. In contrast, velocities in the lower crust beneath the Transantarctic and Ellsworth-Whitmore Mountains are ~6.8 km/s. The P-wave velocities in the upper crust in East Antarctica are within the range 5.5–6.4 km/s. The upper crust of West Antarctica is characterized by the P-wave velocities of 5.6–6.3 km/s. The P-wave veloc- ities in the middle crust vary within 5.9–6.6 km/s in East Antarctica and within 6.3–6.5 km/s in West Antarctica. A low-velocity layer (5.8–5.9 km/s) is detected at depth of ~20–25 km beneath the Princes Elizabeth Land. Published 1-18 1T. Struttura della Terra JCR Journal
author2 Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia
format Article in Journal/Newspaper
author Baranov, A.
Tenzer, R
Morelli, Andrea
author_facet Baranov, A.
Tenzer, R
Morelli, Andrea
author_sort Baranov, A.
title Updated Antarctic crustal model
title_short Updated Antarctic crustal model
title_full Updated Antarctic crustal model
title_fullStr Updated Antarctic crustal model
title_full_unstemmed Updated Antarctic crustal model
title_sort updated antarctic crustal model
publisher Elsevier
publishDate 2021
url http://hdl.handle.net/2122/14122
https://doi.org/10.1016/j.gr.2020.08.010
long_lat ENVELOPE(-104.000,-104.000,-82.500,-82.500)
geographic Antarctic
Byrd
East Antarctica
Ross Sea
West Antarctica
Whitmore Mountains
geographic_facet Antarctic
Byrd
East Antarctica
Ross Sea
West Antarctica
Whitmore Mountains
genre Antarc*
Antarctic
Antarctica
Arctic
East Antarctica
Polarforschung
Ross Sea
The Cryosphere
West Antarctica
genre_facet Antarc*
Antarctic
Antarctica
Arctic
East Antarctica
Polarforschung
Ross Sea
The Cryosphere
West Antarctica
op_relation Gondwana research
/89(2021)
Aitken, A.R.A., Young, D.A., Ferraccioli, F., Betts, P.G., Greenbaum, J.S., Richter, T.G., Roberts, J.L., Blankenship, D.D., Siegert, M.J., 2014. The subglacial geology of Wilkes Land, East Antarctica. Geophys. Res. Lett. 41, 2390–2400. An, M., Wiens, D.A., Zhao, Y., Feng, M., Nyblade, A.A., Kanao, M., Lévêque, J.J., 2015. S- velocity model and inferred Moho topography beneath the Antarctic Plate from Ray- leigh waves. Journal of Geophysical Research: Solid Earth 120 (1), 359–383. Baranov, A., 2010. A new crustal model for Central and Southern Asia. Izvest Phys Solid Earth 46, 34–46. Baranov, A., Bobrov, A., 2018. Crustal structure and properties of Archean cratons of Gond- wanaland: similarity and difference. Russ. Geol. Geophys. 59, 512–524. Baranov, A., Morelli, A., 2013. The Moho depth map of the Antarctica region. Tectonophysics 609, 299–313. Baranov, A., Tenzer, R., Bagherbandi, M., 2018. Combined gravimetric-seismic crustal model for Antarctica. Surv. Geophys. 39 (1), 23–56. Bassin, C., Laske, G., Masters, G., 2000. The current limits of resolution for surface wave to- mography in North America. EOS Trans AGU 81, F897. Bayer, B., Geissler, W., Eckstaller, A., Jokat, W., 2009. Seismic imaging of the crust beneath Dronning Maud Land, East Antarctica. Geophys. J. Int. 178, 860–876. Behrendt, J.C., Le Masurier, W.E., Cooper, A.K., Tessensohn, F., Trehu, A., Damaske, D., 1991. Geophysical studies of the West Antarctic rift system. Tectonics 10 (6), 1257–1273. Bentley, C., 1973. Crustal structure of Antarctica. Tectonophysics 20, 229–240. Bentley, C., 1991. Configuration and structure of the subglacial crust. In: Tingey, R.J. (Ed.), The Geology of Antarctica Clarendon. Oxford, U. K, pp. 335–364. Block, A.E., Bell, R.E., Studinger, M., 2009. Antarctic crustal thickness from satellite gravity: implications for the transantarctic and Gamburtsev Subglacial Mountains. Earth Planet. Sci. Lett. 288, 194–203. Boger, S.D., 2011. Antarctica—before and after Gondwana. Gondwana Res. 19, 335–371. Boger, S., Wilson, C., 2003. Brittle faulting in the Prince Charles Mountains, East Antarctica: cretaceous transtensional tectonics related to the break-up of Gondwana. Tectonophysics 367, 173–186. Chaput, J., Aster, R.C., Huerta, A., Sun, X., Lloyd, A., Wiens, D., Nyblade, A., Anandakrishnan, S., Winberry, J.P., Wilson, T., 2014. The crustal thickness of West Antarctica. J. Geophys. Res. Solid Earth https://doi.org/10.1002/2013JB010642. Chisenga, C., Yan, J., Yan, P., 2019. A crustal thickness model of Antarctica calculated in spherical approximation from satellite gravimetric data. Geophys. J. Int. 218 (1), 388–400. Christensen, N.I., Mooney, W.D., 1995. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. 100 (B7), 9761–9788. Dalziel, I.W.D., 1992. Antarctica: a tale of two supercontinents. Annu. Rev. Earth Planet. Sci. 20, 501–526. Dalziel, I.W.D., Elliot, D.H., 1982. West Antarctica; problem child of Gondwanaland. Tec- tonics 1 (1), 3–19. Danesi, S., Morelli, A., 2001. Structure of the upper mantle under the Antarctic Plate from surface wave tomography. Geophys. Res. Lett. 28, 4395–4398. Faccenna, C., Rossetti, F., Becker, T.W., Danesi, S., Morelli, A., 2008. Recent extension driven by mantle upwelling at craton edge beneath the Admiralty Mountains (Ross Sea, East Antarctica). Tectonics 27. https://doi.org/10.1029/2007TC002197. Ferraccioli, F.F., Coren, E., Bozzo, C., Zanolla, S., Gandol, I., Tabacco, E., Frezzotti, M., 2001. Rifted crust at the East Antarctic Craton margin: gravity and magnetic interpretation along traverse across the Wilkes Subglacial Basin region. Earth Planet. Sci. Lett. 192, 407–421. Ferraccioli, F., Finn, C., Jordan, T., Bell, R.E., Anderson, L.M., Damaske, D., 2011. East Antarc- tic rifting triggers uplift of the Gamburtsev Mountains. Nature 479, 388–392. https:// doi.org/10.1038/nature10566. Filina, I., Blankenship, D., Thoma, M., Lukin, V., Masolov, V., Sen, M., 2008. New 3D ba- thymetry and sediment distribution in Lake Vostok: implication for pre-glacial origin and numerical modeling of the internal processes within the lake. Earth Planet. Sci. Lett. 276 (1–2), 106–114. Fitzsimons, I.C.W., 2000. A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents. J. Afr. Earth Sci. 31 (1), 3–23. Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., Bianchi, C., Bingham, R.G., Blankenship, D.D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A.J., Corr, H.F.J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gogineni, P., Griggs, J.A., Hindmarsh, R.C.A., Holmlund, P., Holt, J.W., Jacobel, R.W., Jenkins, A., Jokat, W., Jordan, T., King, E.C., Kohler, J., Krabill, W., Riger-Kusk, M., Lang- ley, K.A., Leitchenkov, G., Leuschen, C., Luyendyk, B.P., Matsuoka, K., Nogi, Y., Nost, O.A., Popov, S.V., Rignot, E., Rippin, D.M., Riviera, A., Roberts, J., Ross, N., Siegert, M.J., Smith, A.M., Steinhage, D., Studinger, M., Sun, B., Tinto, B.K., Welch, B.C., Young, D.A., Xiangbin, C., Zirizzotti, A., 2013. Bedmap2: improved ice bed, surface and thick- ness datasets for Antarctica. The Cryosphere Discuss. 6, 4305–4361. Grad, M., Guterch, A., Janik, T., Sroda, P., 2002. Seismic characteristic of the crust in the transition zone from the Pacific Ocean to the northern Antarctic Peninsula. West Antarctica. Antarctica at the close of a millennium. Royal Society of New Zealand Bul- letin. 35, 493–498. Groenewald, P., Grantham, G., Watkeys, M., 1991. Geological evidence for a Proterozoic to Mesozoic link between southeastern Africa and Dronning Maud Land, Antarctica. J. Geol. Soc. Lond. 148, 1115–1123. Hansen, S., Nyblade, A., Pyle, M., Wiens, D., Anandakrishnan, S., 2009. Using S wave re- ceiver functions to estimate crustal structure beneath ice sheets: an application to the Transantarctic Mountains and East Antarctic craton. Geochem. Geophys. Geosyst. 10, Q08014. Hansen, S., Nyblade, A., Heeszel, D., Wiens, D., Shore, P., Kanao, M., 2010. Crustal structure of the Gamburtsev Mountains, East Antarctica, from S-wave receiver functions and Rayleigh wave phase velocities. Earth Planet. Sci. Lett. 300, 395–401. Hansen, S., Kenyon, L., Graw, J., Park, Y., Nyblade, A., 2016. Crustal structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: implications for tec- tonic origins. J. Geophys. Res. Solid Earth 121, 812–825. Hole, M.J., LeMasurier, W.E., 1994. Tectonic controls on the geochemical composition of Cenozoic, mafic alkaline volcanic rocks from West Antarctica. Contrib. Mineral. Petrol. 117, 187–202. Hungeling, A., Tyssen, F., 1991. Reflection seismic measurements in western Neuschwabenland. In: Thornson, M.R.A., Crame, J.A., Thomson, J.W. (Eds.), Geological Evolution of Antarctica. Proceedings of the Fifth International Symposium on Antarc- tic Earth Sciences. Robinson College, Cambridge, Cambridge University Press, Cam- bridge, UK, p. 73. Isanina, E., Krupnova, N., Popov, S., Masolov, V., Lukin, V., 2009. Deep structure of the Vostok Basin, East Antarctica as deduced from seismological observations. Geotektonika 3, 45–50. Jacobs, J., Fanning, C.M., Henjes-Kunst, F., Olesch, M., Paech, H.J., 1998. Continuation of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphaser Pan-African high-grade events in central Dronning Maud Land. J. Geol. 106 (4), 385–406. Jacobs, J., Bauer, W., Fanning, C.M., 2003. Late Neoproterozoic/Early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica. Precambrian Res. 126, 27–53. Jokat, W., Miller, H., Hübscher, C., 1996. Structure and origin of southern Weddell Sea crust: results and implications. Geology Society, London. Spec. Publ. 108, 201–211. Kalberg, T., Gohl, K., 2014. The crustal structure and tectonic development of the conti- nental margin of the Amundsen Sea Embayment, West Antarctica: implications from geophysical data. Geophys. J. Int. 198, 327–341. Kanao, M., Fujiwara, A., Miyamachi, H., Toda, S., Tomura, M., Ito, K., Ikawa, T., 2011. Reflec- tion imaging of the crust and the lithospheric mantle in the Lutzow-Holm Complex, Eastern Dronning Maud Land, Antarctica, derived from the SEAL Transects. Tectonophysics 508, 73–84. Kennett, B.L.N., Engdahl, E.R., 1991. Travel times for global earthquake location and phase association. Geophys. J. Int. 105, 429–465. Kogan, A., 1971. First experience in crustal investigation for Antarctica by deep seismic sounding. Russ. Geol. Geophys. 10, 84–89 (in Russian). Kolmakov, A., Mishenkin, B., Solovyev, D., 1975. Deep seismic studies in East Antarctica. Bull. Soviet Antarc. Exped. 5–15 (in Russian). Kriegsman, L.M., 1995. The Pan-African event in East Antarctica: a view from Sri Lanka and the Mozambique Belt. Precambrian Res. 75, 263–277. Laske, G., Masters, G., Ma, Z., Pasyanos, M.E., 2013. Update on CRUST1.0—a 1-degree global model of Earth's crust. Geophys Res Abstr 15:2658. Lawrence, J.F., Wiens, D.A., Nyblade, A., Anandakrishnan, S., Shore, P.J., Voigt, D., 2006. Crust and upper mantle structure of the Transantarctic Mountains and surrounding regions from receiver functions, surface waves, and gravity: implications for uplift models. Geochem Geophys Geosyst 7. Leitchenkov, G., Kudryavtzev, G., 1997. Structure and origin of the Earth’s Crust in the Weddell Sea Embayment (beneath the Front of the Filchner and Ronne Ice Shelves) from deep seismic sounding data. Polarforschung 67 (3), 143–154. Lisker, F., Brown, R., Fabel, D., 2003. Denudation and thermal history along a transect across the Lambert Graben, northern Prince Charles Mountains, Antarctica, derived from apatite fission track thermochronology. Tectonics 22, 1055. Llubes, M., Florsch, N., Legresy, B., Lemoine, J.M., Loyer, S., Crossley, D., Remy, F., 2003. Crustal thickness in Antarctica from CHAMP gravimetry. Earth Planet. Sci. Lett. 212, 103–117. Llubes, M., Seoane, L., Bruinsma, S., R'emy, F., Geodesy, P., 2017. Crustal thickness of Antarctica estimated using data from gravimetric satellites. Solid Earth 1–26. McGinnis, L.D., Bowen, R.H., Erickson, J.M., Allred, B.J., Kreamer, J.L., 1985. East-West Ant- arctic boundary in McMurdo Sound. Tectonophysics 114, 341–356. Mikhalsky, E.V., 2008. Age of the Earth’s crust and the Nd isotopic composition of the mantle sources of East Antarctic complexes. Geochem. Int. 46 (2), 168. Morelli, A., Danesi, S., 2004. Seismological imaging of the Antarctic continental litho- sphere: a review, Global Planet. Change 42, 155–165. O’Donnell, J.P., Nyblade, A.A., 2014. Antarctica’s hypsometry and crustal thickness: impli- cations for the origin of anomalous topography in East Antarctica. Earth Planet. Sci. Lett. 388, 143–155. O’Donnell, J.P., Brisbourne, A.M., Stuart, G.W., Dunham, C.K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A.A., Wiens, D.A., Anandakrishnan, S., Aster, R.C., Huerta, A.D., Lloyd, A.J., Wilson, T., Winberry, J.P., 2019. Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. Geochem. Geophys. Geosyst. 20 (11), 5014–5037. Pappa, F., Ebbing, J., Ferraccioli, F., 2019. Moho depths of Antarctica: comparison of seis- mic, gravity, and isostatic results. Geochem. Geophys. Geosyst. 20, 1629–1645. Pyle, M.L., Wiens, D.A., Nyblade, A.A., Anandakrishnan, S., 2010. Crustal structure of the Transantarctic Mountains near the Ross Sea from ambient seismic noise tomography. Journal of Geophysical Research: Solid Earth. 115 (B11). Ramirez, C., Nyblade, A., Emry, E.L., Julià, J., Sun, X., Anandakrishnan, S., Wiens, D.A., Aster, R.C., Huerta, A.D., Winberry, P., Wilson, T., 2017. Crustal structure of the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: constraints on shear wave velocities, Poisson’s ratios and Moho depths. Geophys. J. Int. 211 (3), 1328–1340. Reading, A., 2004. The seismic structure of Wilkes Land/Terre Adelie, East Antarctica and comparison with Australia: first steps in reconstructing the deep lithosphere of Gondwana. Gondwana Res. 7, 21–30. Reading, A., 2006. The seismic structure of Precambrian and early Paleozoic terranes in the Lambert Glacier region East Antarctica. Earth Planet. Sci. Lett. 244, 44–57. Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M., Zhao, D., 2008. The Grenvillian and Pan-African orogens: world’s largest orogenies through geologic time, and their im- plications on the origin of superplume. Gondwana Res. 14, 51–72. Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–310. Shen, W., Wiens, D.A., Anandakrishnan, S., Aster, R.C., Gerstoft, P., Bromirski, P.D., et al., 2018. The crust and upper mantle structure of central and West Antarctica from Bayesian inversion of Rayleigh wave and receiver functions. Journal of Geophysical Research: Solid Earth 123, 7824–7849. Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J.M., et al., 2019. GlobSed: Updated total sediment thickness in the world's oceans. Geochem. Geophys. Geosys. 20. Studinger, M., Bell, R., Buck, W., Karner, G., Blankenship, D., 2004. Subglacial geology in- land of the TransantarcticMountains in light of new aerogeophysical data. Earth Planet. Sci. Lett. 220, 391–408. Tarkov, A., Vavakin, V., 1982. Poisson’s ratio behavior in various crystalline rocks: applica- tion to the study of the Earth’s interior. Phys. Earth Planet. Inter. 29, 24–29. ten Brink, U.S., Hackney, R.I., Bannister, S., Stern, T.A., Makovsky, Y., 1997. Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet. J. Geophys. Res. 102, 27,603–27,621. Trey, H., Cooper, A., Pellis, G., della Vedova, B., Cochrane, G., Brancolini, G., Makris, J., 1999. Transect across the West Antarctic rift system in the Ross Sea, Antarctica. Tectonophysics 301, 61–74. Winberry, P., Anandakrishnan, S., 2004. Crustal structure of the West Antarctic rift system and Marie Byrd Land hotspot. Geology 977–980. Wörner, G., 1999. Lithospheric dynamics and mantle sources of alkaline magmatism of the Cenozoic West Antarctic Rift system. Glob Planet Change 23, 61–77. Zhu, L., Kanamori, H., 2000. Moho depth variation in Southern California from teleseismic receiver functions. J Geophys Res 105, 2969–2980.
1342-937X
http://hdl.handle.net/2122/14122
doi:10.1016/j.gr.2020.08.010
op_rights restricted
op_doi https://doi.org/10.1016/j.gr.2020.08.010
https://doi.org/10.1002/2013JB010642
container_title Gondwana Research
container_volume 89
container_start_page 1
op_container_end_page 18
_version_ 1766271579400962048
spelling ftingv:oai:www.earth-prints.org:2122/14122 2023-05-15T14:01:37+02:00 Updated Antarctic crustal model Baranov, A. Tenzer, R Morelli, Andrea Schmidt Institute of Physics of the Earth, Russian Academy of Sciences Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia 2021-01 http://hdl.handle.net/2122/14122 https://doi.org/10.1016/j.gr.2020.08.010 en eng Elsevier Gondwana research /89(2021) Aitken, A.R.A., Young, D.A., Ferraccioli, F., Betts, P.G., Greenbaum, J.S., Richter, T.G., Roberts, J.L., Blankenship, D.D., Siegert, M.J., 2014. The subglacial geology of Wilkes Land, East Antarctica. Geophys. Res. Lett. 41, 2390–2400. An, M., Wiens, D.A., Zhao, Y., Feng, M., Nyblade, A.A., Kanao, M., Lévêque, J.J., 2015. S- velocity model and inferred Moho topography beneath the Antarctic Plate from Ray- leigh waves. Journal of Geophysical Research: Solid Earth 120 (1), 359–383. Baranov, A., 2010. A new crustal model for Central and Southern Asia. Izvest Phys Solid Earth 46, 34–46. Baranov, A., Bobrov, A., 2018. Crustal structure and properties of Archean cratons of Gond- wanaland: similarity and difference. Russ. Geol. Geophys. 59, 512–524. Baranov, A., Morelli, A., 2013. The Moho depth map of the Antarctica region. Tectonophysics 609, 299–313. Baranov, A., Tenzer, R., Bagherbandi, M., 2018. Combined gravimetric-seismic crustal model for Antarctica. Surv. Geophys. 39 (1), 23–56. Bassin, C., Laske, G., Masters, G., 2000. The current limits of resolution for surface wave to- mography in North America. EOS Trans AGU 81, F897. Bayer, B., Geissler, W., Eckstaller, A., Jokat, W., 2009. Seismic imaging of the crust beneath Dronning Maud Land, East Antarctica. Geophys. J. Int. 178, 860–876. Behrendt, J.C., Le Masurier, W.E., Cooper, A.K., Tessensohn, F., Trehu, A., Damaske, D., 1991. Geophysical studies of the West Antarctic rift system. Tectonics 10 (6), 1257–1273. Bentley, C., 1973. Crustal structure of Antarctica. Tectonophysics 20, 229–240. Bentley, C., 1991. Configuration and structure of the subglacial crust. In: Tingey, R.J. (Ed.), The Geology of Antarctica Clarendon. Oxford, U. K, pp. 335–364. Block, A.E., Bell, R.E., Studinger, M., 2009. Antarctic crustal thickness from satellite gravity: implications for the transantarctic and Gamburtsev Subglacial Mountains. Earth Planet. Sci. Lett. 288, 194–203. Boger, S.D., 2011. Antarctica—before and after Gondwana. Gondwana Res. 19, 335–371. Boger, S., Wilson, C., 2003. Brittle faulting in the Prince Charles Mountains, East Antarctica: cretaceous transtensional tectonics related to the break-up of Gondwana. Tectonophysics 367, 173–186. Chaput, J., Aster, R.C., Huerta, A., Sun, X., Lloyd, A., Wiens, D., Nyblade, A., Anandakrishnan, S., Winberry, J.P., Wilson, T., 2014. The crustal thickness of West Antarctica. J. Geophys. Res. Solid Earth https://doi.org/10.1002/2013JB010642. Chisenga, C., Yan, J., Yan, P., 2019. A crustal thickness model of Antarctica calculated in spherical approximation from satellite gravimetric data. Geophys. J. Int. 218 (1), 388–400. Christensen, N.I., Mooney, W.D., 1995. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. 100 (B7), 9761–9788. Dalziel, I.W.D., 1992. Antarctica: a tale of two supercontinents. Annu. Rev. Earth Planet. Sci. 20, 501–526. Dalziel, I.W.D., Elliot, D.H., 1982. West Antarctica; problem child of Gondwanaland. Tec- tonics 1 (1), 3–19. Danesi, S., Morelli, A., 2001. Structure of the upper mantle under the Antarctic Plate from surface wave tomography. Geophys. Res. Lett. 28, 4395–4398. Faccenna, C., Rossetti, F., Becker, T.W., Danesi, S., Morelli, A., 2008. Recent extension driven by mantle upwelling at craton edge beneath the Admiralty Mountains (Ross Sea, East Antarctica). Tectonics 27. https://doi.org/10.1029/2007TC002197. Ferraccioli, F.F., Coren, E., Bozzo, C., Zanolla, S., Gandol, I., Tabacco, E., Frezzotti, M., 2001. Rifted crust at the East Antarctic Craton margin: gravity and magnetic interpretation along traverse across the Wilkes Subglacial Basin region. Earth Planet. Sci. Lett. 192, 407–421. Ferraccioli, F., Finn, C., Jordan, T., Bell, R.E., Anderson, L.M., Damaske, D., 2011. East Antarc- tic rifting triggers uplift of the Gamburtsev Mountains. Nature 479, 388–392. https:// doi.org/10.1038/nature10566. Filina, I., Blankenship, D., Thoma, M., Lukin, V., Masolov, V., Sen, M., 2008. New 3D ba- thymetry and sediment distribution in Lake Vostok: implication for pre-glacial origin and numerical modeling of the internal processes within the lake. Earth Planet. Sci. Lett. 276 (1–2), 106–114. Fitzsimons, I.C.W., 2000. A review of tectonic events in the East Antarctic Shield and their implications for Gondwana and earlier supercontinents. J. Afr. Earth Sci. 31 (1), 3–23. Fretwell, P., Pritchard, H.D., Vaughan, D.G., Bamber, J.L., Barrand, N.E., Bell, R., Bianchi, C., Bingham, R.G., Blankenship, D.D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A.J., Corr, H.F.J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gogineni, P., Griggs, J.A., Hindmarsh, R.C.A., Holmlund, P., Holt, J.W., Jacobel, R.W., Jenkins, A., Jokat, W., Jordan, T., King, E.C., Kohler, J., Krabill, W., Riger-Kusk, M., Lang- ley, K.A., Leitchenkov, G., Leuschen, C., Luyendyk, B.P., Matsuoka, K., Nogi, Y., Nost, O.A., Popov, S.V., Rignot, E., Rippin, D.M., Riviera, A., Roberts, J., Ross, N., Siegert, M.J., Smith, A.M., Steinhage, D., Studinger, M., Sun, B., Tinto, B.K., Welch, B.C., Young, D.A., Xiangbin, C., Zirizzotti, A., 2013. Bedmap2: improved ice bed, surface and thick- ness datasets for Antarctica. The Cryosphere Discuss. 6, 4305–4361. Grad, M., Guterch, A., Janik, T., Sroda, P., 2002. Seismic characteristic of the crust in the transition zone from the Pacific Ocean to the northern Antarctic Peninsula. West Antarctica. Antarctica at the close of a millennium. Royal Society of New Zealand Bul- letin. 35, 493–498. Groenewald, P., Grantham, G., Watkeys, M., 1991. Geological evidence for a Proterozoic to Mesozoic link between southeastern Africa and Dronning Maud Land, Antarctica. J. Geol. Soc. Lond. 148, 1115–1123. Hansen, S., Nyblade, A., Pyle, M., Wiens, D., Anandakrishnan, S., 2009. Using S wave re- ceiver functions to estimate crustal structure beneath ice sheets: an application to the Transantarctic Mountains and East Antarctic craton. Geochem. Geophys. Geosyst. 10, Q08014. Hansen, S., Nyblade, A., Heeszel, D., Wiens, D., Shore, P., Kanao, M., 2010. Crustal structure of the Gamburtsev Mountains, East Antarctica, from S-wave receiver functions and Rayleigh wave phase velocities. Earth Planet. Sci. Lett. 300, 395–401. Hansen, S., Kenyon, L., Graw, J., Park, Y., Nyblade, A., 2016. Crustal structure beneath the Northern Transantarctic Mountains and Wilkes Subglacial Basin: implications for tec- tonic origins. J. Geophys. Res. Solid Earth 121, 812–825. Hole, M.J., LeMasurier, W.E., 1994. Tectonic controls on the geochemical composition of Cenozoic, mafic alkaline volcanic rocks from West Antarctica. Contrib. Mineral. Petrol. 117, 187–202. Hungeling, A., Tyssen, F., 1991. Reflection seismic measurements in western Neuschwabenland. In: Thornson, M.R.A., Crame, J.A., Thomson, J.W. (Eds.), Geological Evolution of Antarctica. Proceedings of the Fifth International Symposium on Antarc- tic Earth Sciences. Robinson College, Cambridge, Cambridge University Press, Cam- bridge, UK, p. 73. Isanina, E., Krupnova, N., Popov, S., Masolov, V., Lukin, V., 2009. Deep structure of the Vostok Basin, East Antarctica as deduced from seismological observations. Geotektonika 3, 45–50. Jacobs, J., Fanning, C.M., Henjes-Kunst, F., Olesch, M., Paech, H.J., 1998. Continuation of the Mozambique Belt into East Antarctica: Grenville-age metamorphism and polyphaser Pan-African high-grade events in central Dronning Maud Land. J. Geol. 106 (4), 385–406. Jacobs, J., Bauer, W., Fanning, C.M., 2003. Late Neoproterozoic/Early Palaeozoic events in central Dronning Maud Land and significance for the southern extension of the East African Orogen into East Antarctica. Precambrian Res. 126, 27–53. Jokat, W., Miller, H., Hübscher, C., 1996. Structure and origin of southern Weddell Sea crust: results and implications. Geology Society, London. Spec. Publ. 108, 201–211. Kalberg, T., Gohl, K., 2014. The crustal structure and tectonic development of the conti- nental margin of the Amundsen Sea Embayment, West Antarctica: implications from geophysical data. Geophys. J. Int. 198, 327–341. Kanao, M., Fujiwara, A., Miyamachi, H., Toda, S., Tomura, M., Ito, K., Ikawa, T., 2011. Reflec- tion imaging of the crust and the lithospheric mantle in the Lutzow-Holm Complex, Eastern Dronning Maud Land, Antarctica, derived from the SEAL Transects. Tectonophysics 508, 73–84. Kennett, B.L.N., Engdahl, E.R., 1991. Travel times for global earthquake location and phase association. Geophys. J. Int. 105, 429–465. Kogan, A., 1971. First experience in crustal investigation for Antarctica by deep seismic sounding. Russ. Geol. Geophys. 10, 84–89 (in Russian). Kolmakov, A., Mishenkin, B., Solovyev, D., 1975. Deep seismic studies in East Antarctica. Bull. Soviet Antarc. Exped. 5–15 (in Russian). Kriegsman, L.M., 1995. The Pan-African event in East Antarctica: a view from Sri Lanka and the Mozambique Belt. Precambrian Res. 75, 263–277. Laske, G., Masters, G., Ma, Z., Pasyanos, M.E., 2013. Update on CRUST1.0—a 1-degree global model of Earth's crust. Geophys Res Abstr 15:2658. Lawrence, J.F., Wiens, D.A., Nyblade, A., Anandakrishnan, S., Shore, P.J., Voigt, D., 2006. Crust and upper mantle structure of the Transantarctic Mountains and surrounding regions from receiver functions, surface waves, and gravity: implications for uplift models. Geochem Geophys Geosyst 7. Leitchenkov, G., Kudryavtzev, G., 1997. Structure and origin of the Earth’s Crust in the Weddell Sea Embayment (beneath the Front of the Filchner and Ronne Ice Shelves) from deep seismic sounding data. Polarforschung 67 (3), 143–154. Lisker, F., Brown, R., Fabel, D., 2003. Denudation and thermal history along a transect across the Lambert Graben, northern Prince Charles Mountains, Antarctica, derived from apatite fission track thermochronology. Tectonics 22, 1055. Llubes, M., Florsch, N., Legresy, B., Lemoine, J.M., Loyer, S., Crossley, D., Remy, F., 2003. Crustal thickness in Antarctica from CHAMP gravimetry. Earth Planet. Sci. Lett. 212, 103–117. Llubes, M., Seoane, L., Bruinsma, S., R'emy, F., Geodesy, P., 2017. Crustal thickness of Antarctica estimated using data from gravimetric satellites. Solid Earth 1–26. McGinnis, L.D., Bowen, R.H., Erickson, J.M., Allred, B.J., Kreamer, J.L., 1985. East-West Ant- arctic boundary in McMurdo Sound. Tectonophysics 114, 341–356. Mikhalsky, E.V., 2008. Age of the Earth’s crust and the Nd isotopic composition of the mantle sources of East Antarctic complexes. Geochem. Int. 46 (2), 168. Morelli, A., Danesi, S., 2004. Seismological imaging of the Antarctic continental litho- sphere: a review, Global Planet. Change 42, 155–165. O’Donnell, J.P., Nyblade, A.A., 2014. Antarctica’s hypsometry and crustal thickness: impli- cations for the origin of anomalous topography in East Antarctica. Earth Planet. Sci. Lett. 388, 143–155. O’Donnell, J.P., Brisbourne, A.M., Stuart, G.W., Dunham, C.K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A.A., Wiens, D.A., Anandakrishnan, S., Aster, R.C., Huerta, A.D., Lloyd, A.J., Wilson, T., Winberry, J.P., 2019. Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. Geochem. Geophys. Geosyst. 20 (11), 5014–5037. Pappa, F., Ebbing, J., Ferraccioli, F., 2019. Moho depths of Antarctica: comparison of seis- mic, gravity, and isostatic results. Geochem. Geophys. Geosyst. 20, 1629–1645. Pyle, M.L., Wiens, D.A., Nyblade, A.A., Anandakrishnan, S., 2010. Crustal structure of the Transantarctic Mountains near the Ross Sea from ambient seismic noise tomography. Journal of Geophysical Research: Solid Earth. 115 (B11). Ramirez, C., Nyblade, A., Emry, E.L., Julià, J., Sun, X., Anandakrishnan, S., Wiens, D.A., Aster, R.C., Huerta, A.D., Winberry, P., Wilson, T., 2017. Crustal structure of the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: constraints on shear wave velocities, Poisson’s ratios and Moho depths. Geophys. J. Int. 211 (3), 1328–1340. Reading, A., 2004. The seismic structure of Wilkes Land/Terre Adelie, East Antarctica and comparison with Australia: first steps in reconstructing the deep lithosphere of Gondwana. Gondwana Res. 7, 21–30. Reading, A., 2006. The seismic structure of Precambrian and early Paleozoic terranes in the Lambert Glacier region East Antarctica. Earth Planet. Sci. Lett. 244, 44–57. Rino, S., Kon, Y., Sato, W., Maruyama, S., Santosh, M., Zhao, D., 2008. The Grenvillian and Pan-African orogens: world’s largest orogenies through geologic time, and their im- plications on the origin of superplume. Gondwana Res. 14, 51–72. Rudnick, R.L., Fountain, D.M., 1995. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–310. Shen, W., Wiens, D.A., Anandakrishnan, S., Aster, R.C., Gerstoft, P., Bromirski, P.D., et al., 2018. The crust and upper mantle structure of central and West Antarctica from Bayesian inversion of Rayleigh wave and receiver functions. Journal of Geophysical Research: Solid Earth 123, 7824–7849. Straume, E.O., Gaina, C., Medvedev, S., Hochmuth, K., Gohl, K., Whittaker, J.M., et al., 2019. GlobSed: Updated total sediment thickness in the world's oceans. Geochem. Geophys. Geosys. 20. Studinger, M., Bell, R., Buck, W., Karner, G., Blankenship, D., 2004. Subglacial geology in- land of the TransantarcticMountains in light of new aerogeophysical data. Earth Planet. Sci. Lett. 220, 391–408. Tarkov, A., Vavakin, V., 1982. Poisson’s ratio behavior in various crystalline rocks: applica- tion to the study of the Earth’s interior. Phys. Earth Planet. Inter. 29, 24–29. ten Brink, U.S., Hackney, R.I., Bannister, S., Stern, T.A., Makovsky, Y., 1997. Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet. J. Geophys. Res. 102, 27,603–27,621. Trey, H., Cooper, A., Pellis, G., della Vedova, B., Cochrane, G., Brancolini, G., Makris, J., 1999. Transect across the West Antarctic rift system in the Ross Sea, Antarctica. Tectonophysics 301, 61–74. Winberry, P., Anandakrishnan, S., 2004. Crustal structure of the West Antarctic rift system and Marie Byrd Land hotspot. Geology 977–980. Wörner, G., 1999. Lithospheric dynamics and mantle sources of alkaline magmatism of the Cenozoic West Antarctic Rift system. Glob Planet Change 23, 61–77. Zhu, L., Kanamori, H., 2000. Moho depth variation in Southern California from teleseismic receiver functions. J Geophys Res 105, 2969–2980. 1342-937X http://hdl.handle.net/2122/14122 doi:10.1016/j.gr.2020.08.010 restricted Crustal structure Sediments Antarctica Gondwana 04.06. Seismology article 2021 ftingv https://doi.org/10.1016/j.gr.2020.08.010 https://doi.org/10.1002/2013JB010642 2022-07-29T06:08:19Z We use seismic data together with a subglacial bedrock relief from the BEDMAP2 database to obtain a new three- layer model of the consolidated (crystalline) crust of Antarctica that locally improves the global seismic crustal model CRUST1.0. We collect suitable data for constructing crustal layers, analyse them and build maps of the crustal layer thickness and seismic velocities. We use the subglacial relief according to a tectonic configuration and then interpolate data using a statistical kriging method. The P-wave velocity information from old seismic profiles have been supplemented with the new shear-wave velocity models. We adjust the thickness of crustal layers by multiplying a total crustal thickness by a percentage ratio of each individual layer at each point. Our re- sults reveal large variations in seismic velocities between different crustal blocks forming Antarctica. The most pronounced differences exist between East and West Antarctica. In East Antarctica, a high P-wave velocity (vP > 7 km/s) layer in the lower crust is absent. The P-wave velocity in the lower crust changes from 6.1 km/s beneath the Lambert Rift to 6.9 km/s beneath the Wilkes Basin. In West Antarctica, a thick mafic lower crust is characterized by large P-wave velocities, ranging from 7.0 km/s under the Ross Sea to 7.3 km/s under the Byrd Basin. In contrast, velocities in the lower crust beneath the Transantarctic and Ellsworth-Whitmore Mountains are ~6.8 km/s. The P-wave velocities in the upper crust in East Antarctica are within the range 5.5–6.4 km/s. The upper crust of West Antarctica is characterized by the P-wave velocities of 5.6–6.3 km/s. The P-wave veloc- ities in the middle crust vary within 5.9–6.6 km/s in East Antarctica and within 6.3–6.5 km/s in West Antarctica. A low-velocity layer (5.8–5.9 km/s) is detected at depth of ~20–25 km beneath the Princes Elizabeth Land. Published 1-18 1T. Struttura della Terra JCR Journal Article in Journal/Newspaper Antarc* Antarctic Antarctica Arctic East Antarctica Polarforschung Ross Sea The Cryosphere West Antarctica Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Antarctic Byrd East Antarctica Ross Sea West Antarctica Whitmore Mountains ENVELOPE(-104.000,-104.000,-82.500,-82.500) Gondwana Research 89 1 18