Degassing regime of Hekla volcano 2012–2013

Hekla is a frequently active volcano with an infamously short pre-eruptive warning period. Our project contributes to the ongoing work on improving Hekla’s monitoring and early warning systems. In 2012 we began monitoring gas release at Hekla. The dataset comprises semi-permanent near-real time meas...

Full description

Bibliographic Details
Published in:Geochimica et Cosmochimica Acta
Main Authors: Ilyinskaya, Evgenia, Aiuppa, Alessandro, Bergsson, Baldur, Di Napoli, Rossella, Fridriksson, Thráinn, Oladottir, Audur Agla, Óskarsson, Finnbogi, Grassa, Fausto, Pfeffer, Melissa, Lechner, Katharina, Yeo, Richard, Giudice, Gaetano
Other Authors: British Geological Survey, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia, Icelandic Meteorological Office, Bustadavegi, DiSTeM, Universita`di Palermo, Palermo, Italy, #PLACEHOLDER_PARENT_METADATA_VALUE#
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2015
Subjects:
Online Access:http://hdl.handle.net/2122/13983
https://www.sciencedirect.com/science/article/pii/S0016703715000241
https://doi.org/10.1016/j.gca.2015.01.013
id ftingv:oai:www.earth-prints.org:2122/13983
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Hekla
Multi-GAS
degassing
volcanic unrest
04.08. Volcanology
spellingShingle Hekla
Multi-GAS
degassing
volcanic unrest
04.08. Volcanology
Ilyinskaya, Evgenia
Aiuppa, Alessandro
Bergsson, Baldur
Di Napoli, Rossella
Fridriksson, Thráinn
Oladottir, Audur Agla
Óskarsson, Finnbogi
Grassa, Fausto
Pfeffer, Melissa
Lechner, Katharina
Yeo, Richard
Giudice, Gaetano
Degassing regime of Hekla volcano 2012–2013
topic_facet Hekla
Multi-GAS
degassing
volcanic unrest
04.08. Volcanology
description Hekla is a frequently active volcano with an infamously short pre-eruptive warning period. Our project contributes to the ongoing work on improving Hekla’s monitoring and early warning systems. In 2012 we began monitoring gas release at Hekla. The dataset comprises semi-permanent near-real time measurements with a MultiGAS system, quantification of diffuse gas flux, and direct samples analysed for composition and isotopes (δ13C, δD and δ18O). In addition, we used reaction path modelling to derive information on the origin and reaction pathways of the gas emissions. Hekla’s quiescent gas composition was CO2-dominated (0.8 mol fraction) and the δ13C signature was consistent with published values for Icelandic magmas. The gas is poor in H2O and S compared to hydrothermal manifestations and syn-eruptive emissions from other active volcanic systems in Iceland. The total CO2 flux from Hekla central volcano (diffuse soil emissions) is at least 44 T d−1, thereof 14 T d−1 are sourced from a small area at the volcano’s summit. There was no detectable gas flux at other craters, even though some of them had higher ground temperatures and had erupted more recently. Our measurements are consistent with a magma reservoir at depth coupled with a shallow dike beneath the summit. In the current quiescent state, the composition of the exsolved gas is substantially modified along its pathway to the surface through cooling and interaction with wall-rock and groundwater. The modification involves both significant H2O condensation and scrubbing of S-bearing species, leading to a CO2-dominated gas emitted at the summit. We conclude that a compositional shift towards more S- and H2O-rich gas compositions if measured in the future by the permanent MultiGAS station should be viewed as sign of imminent volcanic unrest on Hekla. The research leading to these results has received funding from the Icelandic Centre for Research (RANNIS, grant number 110002-0031); the European Community’s Seventh Framework Programme under Grant Agreement No. ...
author2 British Geological Survey
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia
Icelandic Meteorological Office, Bustadavegi
DiSTeM, Universita`di Palermo, Palermo, Italy
#PLACEHOLDER_PARENT_METADATA_VALUE#
format Article in Journal/Newspaper
author Ilyinskaya, Evgenia
Aiuppa, Alessandro
Bergsson, Baldur
Di Napoli, Rossella
Fridriksson, Thráinn
Oladottir, Audur Agla
Óskarsson, Finnbogi
Grassa, Fausto
Pfeffer, Melissa
Lechner, Katharina
Yeo, Richard
Giudice, Gaetano
author_facet Ilyinskaya, Evgenia
Aiuppa, Alessandro
Bergsson, Baldur
Di Napoli, Rossella
Fridriksson, Thráinn
Oladottir, Audur Agla
Óskarsson, Finnbogi
Grassa, Fausto
Pfeffer, Melissa
Lechner, Katharina
Yeo, Richard
Giudice, Gaetano
author_sort Ilyinskaya, Evgenia
title Degassing regime of Hekla volcano 2012–2013
title_short Degassing regime of Hekla volcano 2012–2013
title_full Degassing regime of Hekla volcano 2012–2013
title_fullStr Degassing regime of Hekla volcano 2012–2013
title_full_unstemmed Degassing regime of Hekla volcano 2012–2013
title_sort degassing regime of hekla volcano 2012–2013
publisher Elsevier
publishDate 2015
url http://hdl.handle.net/2122/13983
https://www.sciencedirect.com/science/article/pii/S0016703715000241
https://doi.org/10.1016/j.gca.2015.01.013
genre Hekla
Iceland
genre_facet Hekla
Iceland
op_relation Geochimica et Cosmochimica Acta
/159 (2015)
Aiuppa A., Federico C., Giudice G., Giuffrida G., Guida R., Gurrieri S., Liuzzo M., Moretti R. and Papale P. (2009) The 2007 eruption of Stromboli volcano: insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. J. Volcanol. Geoth. Res. 182, 221–230. Aiuppa A., Burton M. R., Caltabiano T., Giudice G., Guerrieri S., Liuzzo M., Mure F. and Salerno G. G. (2010) Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm. Geophys. Res. Lett. 37, L17303. Allard P., Burton M. R., Oskarsson N., Michel A. and Polacci M. (2010) Chemistry and fluxes of magmatic gases powering the explosive trachyandesitic phase of Eyjafjallajokull 2010 eruption: constraints on degassing magma volumes and processes. In Presented at the AGU Fall Meeting. AGU, San Francisco, California. A ´ rnason B. (1976). Groundwater Systems in Iceland Traced by Deuterium. Prentsmidjan Leiftur HF. Arno´rsson S. and Barnes I. (1983) The nature of carbon dioxide waters in Snaefellsnes, western Iceland. Geothermics 12, 171–176. Bergfeld D., Evans W. C., Lowenstern J. B. and Hurwitz S. (2012) Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming. Chem. Geol. 330–331, 233–243. Burton M. R., Salerno G. G., La Spina A., Stefansson A. and Kaasalainen H. (2010) Measurements of volcanic gas emissions during the first phase of 2010 eruptive activity of Eyjafallajokull. In Presented at the AGU Fall Meeting. AGU, San Francisco, California. Burton M. R., Sawyer G. M. and Granieri D. (2013) Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323–354. Cardellini C., Chiodini G. and Frondini F. (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J. Geophys. Res. 108, 2425. Cartwright I., Weaver T., Tweed S., Ahearne D., Cooper M., Czapnik K. and Tranter J. (2002) Stable isotope geochemistry of cold CO2-bearing mineral spring waters, Daylesford, Victoria, Australia: sources of gas and water and links with waning volcanism. Chem. Geol. 185, 71–91. Chiodini G. and Marini L. (1998) Hydrothermal gas equilibria: the H2O–H2–CO2–CO–CH4 system. Geochim. Cosmochim. Acta 62, 2673–2687. Craig H. (1961) Isotopic variations in meteoric waters. Science 133, 1702–1703. Darling W. G. and A ´ rmannsson H. (1989) Stable isotopic aspects of fluid flow in the Krafla, Na´mafjall and Theistareykir geothermal systems of northeast Iceland. Chem. Geol. 76, 197–213. http://dx.doi.org/10.1016/0009-2541(89)90090-9. Delalande M., Bergonzini L., Gherardi F., Guidi M., Andre L., Abdallah I. and Williamson D. (2011) Fluid geochemistry of natural manifestations from the Southern Poroto–Rungwe hydrothermal system (Tanzania): Preliminary conceptual model. J. Volcanol. Geoth. Res. 199, 127–141. http://dx.doi.org/ 10.1016/j.jvolgeores.2010.11.002. Di Napoli R., Aiuppa A. and Allard P. (2014) First Multi-GAS based characterisation of the Boiling Lake volcanic gas (Dominica, Lesser Antilles). Ann. Geophys. 56(5), 2013. Flaathen T. and Gislason S. R. (2007) The effect of volcanic eruptions on the chemistry of surface waters: the 1991 and 2000 eruptions of Mt. Hekla, Iceland. J. Volcanol. Geoth. Res. 164, 293–316. Flaathen T., Gislason S. R., Oelkers E. and Sveinbjornsdottir A. (2009) Chemical evolution of the Mt. Hekla, Iceland, groundwaters: a natural analogue for CO2 sequestration in basaltic rocks. Appl. Geochem. 24, 463–474. Fridriksson T., Kristjansson B. R., Armannsson H., Margretardottir E., Olafsdottir S. and Chiodini G. (2006) CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland. Appl. Geochem. 21, 1551–1569. Friedman I. and O’Neil J. (1977) Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry (ed. M. K. Fleischer). Professional Paper. US Dept. of the Interior, US Geological Survey, p. 60. Geirsson H., LaFemina P., A ´ rnado´ ttir T., Sturkell E., Sigmundsson F., Travis M., Schmidt P., Lund B., Hreinsdo´ ttir S. and Bennett R. (2012) Volcano deformation at active plate boundaries: deep magma accumulation at Hekla volcano and plate boundary deformation in south Iceland. J. Geophys. Res. Solid Earth 117, B11409. Gerlach T. M. (1980) Evaluation of volcanic gas analysis from Surtsey volcano, Iceland 1964–1967. J. Volcanol. Geoth. Res. 8, 191–198. Giggenbach W. F. (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765. Gislason S. R. and Eugster H. P. (1987) Meteoric water-basalt interactions. II: A field study in N.E Iceland. Geochim. Cosmochim. Acta 51, 2841–2855. Gislason S. R. and Oelkers E. (2003) Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochim. Cosmochim. Acta 67, 3817–3832. Gislason S. R., Andre´sdo´ ttir A., Sveinbjo¨rnsdo´ ttir A ´ ., Oskarsson N., Thordarson T., Torssander P., Novaˆk M. and Zaˆk K. (1992) Local effects of volcanoes on the hydrosphere: example from Hekla, southern Iceland. Water–Rock Interact. Rotterdam, Balkema 1, 477–481. Granieri D., Chiodini G., Marzocchi W. and Avino R. (2003) Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): influence of environmental and volcanic parameters. Earth Planet. Sci. Lett. 212, 167–179. Gronvold K., Larsen G., Einarsson P., Thorarinsson S. and Saemundsson K. (1983) The Hekla eruption 1980–1981. Bull. Volcanologique 46, 349–363. Gudmundsson A., Oskarsson N., Gronvold K., Saemundsson K., Sigurdsson O., Stefansson R., Gislason S. R., Einarsson P., Brandsdottir B., Larsen G., Johannesson H. and Thordarson T. (1992) The 1991 eruption of Hekla, Iceland. Bull. Volcanol. 54, 238–246. Hedenquist J. W. and Lowenstern J. B. (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519– 527. Helgeson H. C. (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions- I. Thermodynamic relations. Geochim. Cosmochim. Acta 32, 853–877. Helgeson H. C. (1979) Mass transfer among minerals and hydrothermal solutions. Geochem. Hydrothermal Ore Deposits 2, 568–610. Helgeson H. C., Garrels R. M. and MacKenzie F. T. (1969) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-II. Applications. Geochim. Cosmochim. Acta 33, 455–481. Herna´ndez P., Pe´rez N., Fridriksson T., Egbert J., Ilyinskaya E., Tha´rhallsson A., I´varsson G., Gı´slason G., Gunnarsson I., Jo´nsson B., Padro´n E., Melia´n G., Mori T. and Notsu K. (2012) Diffuse volcanic degassing and thermal energy release from Hengill volcanic system, Iceland. Bull. Volcanol. 74, 2435– 2448. Hjartarson A ´ . and Sigurðsson F. (2000) Lindir og lindasv ði ı´ Holta- og Landssveit (Open-file report No. OS-2000/054). Orkustofnun – Rannso´knarsvið. Holm N. G., Gislason S. R., Sturkell E. and Torssander P. (2010) Hekla cold springs (Iceland): groundwater mixing with magmatic gases. Isot. Environ. Health Stud. 46, 180–189. Ho¨skuldsson A ´ ., O´ skarsson N., Pedersen R., Gro¨nvold K., Vogfjo¨ rð K. andO´ lafsdo´ ttir R. (2007) The millennium eruption of Hekla in February 2000. Bull. Volcanol. 70, 169–182. Kjartansson E. and Gronvold K. (1983) Location of a magma reservoir beneath Hekla Volcano, Iceland. Nature 301, 139–141. Kristmannsdo´ ttir H. and Sveinbjoernsdo´ ttir A ´ . E. (2012) An anomalous thermal water from Hofsstadir western Iceland: Evidence for past CO2 flushing. Appl. Geochem. 27, 1146–1152. Larsen G., Dugmore A. and Newton A. (1999) Geochemistry of historical-age silicic tephras in Iceland. Holocene 9, 463–471. Marini L. and Gambardella B. (2005) Geochemical modeling of magmatic gas scrubbing. Ann. Geophys. Marty B., Gunnlaugsson E., Jambon A., Oskarsson N., Ozima M., Pineau F. and Torssander P. (1991) Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland. Chem. Geol. 91, 207–225. Matthews A., Fouillac C., Hill R., O’Nions R. K. and Oxburgh E. R. (1987) Mantle-derived volatiles in continental crust: the Massif Central of France. Earth Planet. Sci. Lett. 85, 117–128. Moune S., Gauthier P.-J., Gislason S. R. and Sigmarsson O. (2006) Trace element degassing and enrichment in the eruptive plume of the 2000 eruption of Hekla volcano, Iceland. Geochim. Cosmochim. Acta 70, 461–479. Moune S., Sigmarsson O., Thordarson T. and Gauthier P.-J. (2007) Recent volatile evolution in the magmatic system of Hekla volcano, Iceland. Earth Planet. Sci. Lett. 255, 373–389. Oelkers E. H. (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochim. Cosmochim. Acta 65, 3703–3719. Oelkers E. H., Schott J. and Gı´slason S. (1999) Invited lecture: A general mechanism for multi-oxide solid dissolution and its application to basaltic glass. Geochem. Earth’s Surf. Balkema, Rotterdam, 413–416. Ofeigsson B., Hooper A., Sigmundsson F., Sturkell E. and Grapenthin R. (2011) Deep magma storage at Hekla volcano, Iceland, revealed by InSAR time series analysis. J. Geophys. Res. 116, B05401. O´ lafsson J. and Riley J. P. (1978) Geochemical studies on the thermal brine from Reykjanes (Iceland). Chem. Geol. 21, 219– 237. http://dx.doi.org/10.1016/0009-2541(78)90046-3. Oskarsson N. (1980) The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption. J. Volcanol. Geoth. Res. 8, 251–266. Oskarsson N. (1984) Monitoring of fumarole discharge during the 1975–1982 rifting in Krafla volcanic center, north Iceland. J. Volcanol. Geoth. Res. 22, 97–121. Papale P., Moretti R. and Barbato D. (2006) The compositional dependence of the saturation surface of H2O +CO2 fluids in silicate melts. Chem. Geol. 229, 78–95. Pauwels H., Fouillac C., Goff F. and Vuataz F.-D. (1997) The isotopic and chemical composition of CO2-rich thermal waters in the Mont-Dore region (Massif-Central, France). Appl. Geochem. 12, 411–427. Pope E. C., Bird D. K., Arno´rsson S., Fridriksson T., Elders W. A. and Fridleifsson G. O. (2009) Isotopic constraints on ice age fluids in active geothermal systems: Reykjanes, Iceland. Geochim. Cosmochim. Acta 73, 4468–4488. Poreda R., Craig H., Arno´rsson S. and Welhan J. (1992) Helium isotopes in Icelandic geothermal systems: I. 3He, gas chemistry, and 13C relations. Geochim. Cosmochim. Acta 56, 4221–4228. Rose W., Gu Y., Watson I. M., Yu T., Bluth G., Prata A., Krueger A., Krotkov N., Carn S., Fromm M., Hunton D., Ernst G., Viggiano A., Miller T., Ballenthin J., Reeves J., Wilson J., Anderson B. and Flittner D. (2003) The February–March 2000 eruption of Hekla, Iceland from a satellite perspective. In Volcanism and the Earth’s Atmosphere, Geophysical Monograph, pp. 109–132. Volcanism and the Earth’s Atmosphere, Geophysical Monograph. American Geophysical Union. Sigmundsson F., Einarsson P. and Bilham R. (1992) Magma chamber deflation recorded by the global positioning system: the Hekla 1991 Eruption. Geophys. Res. Lett. 19, 1483–1486. Sigvaldason G. E. and Elisson G. (1968) Collection and analysis of volcanic gases at Surtsey Iceland. Geochim. Cosmochim. Acta 32, 797–805. Soosalu H. and Einarsson P. (2004) Seismic constraints on magma chambers at Hekla and Torfajo¨kull volcanoes, Iceland. Bull. Volcanol. 66, 276–286. Sturkell E., Agustsson K., Linde A. T., Sacks S., Einarsson P., Sigmundsson F., Geirsson H., Pedersen R. and La Femina P. (2005) Geodetic constraints on the magma chamber of the Hekla volcano, Iceland. EOS Transactions, AGU 86, V21D–0636. Sturkell E., A ´ gu´stsson K., Linde A. T., Sacks S. I., Einarsson P., Sigmundsson F., Geirsson H., Pedersen R., LaFemina P. C. andO´ lafsson H. (2013) New insights into volcanic activity from strain and other deformation data for the Hekla 2000 eruption. J. Volcanol. Geoth. Res. 256, 78–86. Sveinbjornsdottir A. E., Coleman M. L. and Yardley B. W. D. (1986) Origin and history of hydrothermal fluids of the Reykjanes and Krafla geothermal fields, Iceland. Contr. Mineral. Petrol. 94, 99–109. http://dx.doi.org/10.1007/ BF00371231. Symonds R. B., Gerlach T. M. and Reed M. H. (2001) Magmatic gas scrubbing: implications for volcano monitoring. J. Volcanol. Geoth. Res. 108, 303–341. Thorarinsson S. (1950) The eruption of Mt. Hekla 1947–1948. Bull. Volcanol. 10, 157–168. Thorarinsson T. (1967) The eruption of Hekla 1947-48. 1-The eruptions of Hekla in historical times, a tephrochronological study. Soc. Sci. Isl., 1–170. Thorarinsson S. and Sigvaldason G. E. (1972) The Hekla Eruption of 1970. Bull. Volcanol. 36, 269–288. Vuataz F. D. and Goff F. (1986) Isotope geochemistry of thermal and nonthermal waters in the Valles Caldera, Jemez Mountains, Northern New Mexico. J. Geophys. Res. 91, 1835–1853. Werner C., Evans W., Kelly P., McGimsey R., Pfeffer M., Doukas M. and Neal C. (2012) Deep magmatic degassing versus scrubbing: Elevated CO2 emissions and C/S in the lead-up to the 2009 eruption of Redoubt Volcano. Alaska. Geochem. Geophys. Geosyst. 13, Q03015. Wolery T. J. (1992) EQ3/6: A software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0). Lawrence Livermore National Laboratory, Livermore, CA. Wolery T. J. and Daveler S. A. (1992) EQ6, a computer program for reaction path modeling of aqueous geochemical systems: theoretical manual, user’s guide and related documentation (Version 7.0). Lawrence Livermore Laboratory, University of California. Wolff-Boenisch D., Gislason S. R., Oelkers E. H. and Putnis C. V. (2004) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74 C. Geochim. Cosmochim. Acta 68, 4843–4858.
0016-7037
http://hdl.handle.net/2122/13983
https://www.sciencedirect.com/science/article/pii/S0016703715000241
doi:10.1016/j.gca.2015.01.013
op_rights restricted
op_doi https://doi.org/10.1016/j.gca.2015.01.013
https://doi.org/10.1016/j.jvolgeores.2010.11.002.
container_title Geochimica et Cosmochimica Acta
container_volume 159
container_start_page 80
op_container_end_page 99
_version_ 1766023765290909696
spelling ftingv:oai:www.earth-prints.org:2122/13983 2023-05-15T16:34:01+02:00 Degassing regime of Hekla volcano 2012–2013 Ilyinskaya, Evgenia Aiuppa, Alessandro Bergsson, Baldur Di Napoli, Rossella Fridriksson, Thráinn Oladottir, Audur Agla Óskarsson, Finnbogi Grassa, Fausto Pfeffer, Melissa Lechner, Katharina Yeo, Richard Giudice, Gaetano British Geological Survey Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Palermo, Palermo, Italia Icelandic Meteorological Office, Bustadavegi DiSTeM, Universita`di Palermo, Palermo, Italy #PLACEHOLDER_PARENT_METADATA_VALUE# 2015 http://hdl.handle.net/2122/13983 https://www.sciencedirect.com/science/article/pii/S0016703715000241 https://doi.org/10.1016/j.gca.2015.01.013 en eng Elsevier Geochimica et Cosmochimica Acta /159 (2015) Aiuppa A., Federico C., Giudice G., Giuffrida G., Guida R., Gurrieri S., Liuzzo M., Moretti R. and Papale P. (2009) The 2007 eruption of Stromboli volcano: insights from real-time measurement of the volcanic gas plume CO2/SO2 ratio. J. Volcanol. Geoth. Res. 182, 221–230. Aiuppa A., Burton M. R., Caltabiano T., Giudice G., Guerrieri S., Liuzzo M., Mure F. and Salerno G. G. (2010) Unusually large magmatic CO2 gas emissions prior to a basaltic paroxysm. Geophys. Res. Lett. 37, L17303. Allard P., Burton M. R., Oskarsson N., Michel A. and Polacci M. (2010) Chemistry and fluxes of magmatic gases powering the explosive trachyandesitic phase of Eyjafjallajokull 2010 eruption: constraints on degassing magma volumes and processes. In Presented at the AGU Fall Meeting. AGU, San Francisco, California. A ´ rnason B. (1976). Groundwater Systems in Iceland Traced by Deuterium. Prentsmidjan Leiftur HF. Arno´rsson S. and Barnes I. (1983) The nature of carbon dioxide waters in Snaefellsnes, western Iceland. Geothermics 12, 171–176. Bergfeld D., Evans W. C., Lowenstern J. B. and Hurwitz S. (2012) Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming. Chem. Geol. 330–331, 233–243. Burton M. R., Salerno G. G., La Spina A., Stefansson A. and Kaasalainen H. (2010) Measurements of volcanic gas emissions during the first phase of 2010 eruptive activity of Eyjafallajokull. In Presented at the AGU Fall Meeting. AGU, San Francisco, California. Burton M. R., Sawyer G. M. and Granieri D. (2013) Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323–354. Cardellini C., Chiodini G. and Frondini F. (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J. Geophys. Res. 108, 2425. Cartwright I., Weaver T., Tweed S., Ahearne D., Cooper M., Czapnik K. and Tranter J. (2002) Stable isotope geochemistry of cold CO2-bearing mineral spring waters, Daylesford, Victoria, Australia: sources of gas and water and links with waning volcanism. Chem. Geol. 185, 71–91. Chiodini G. and Marini L. (1998) Hydrothermal gas equilibria: the H2O–H2–CO2–CO–CH4 system. Geochim. Cosmochim. Acta 62, 2673–2687. Craig H. (1961) Isotopic variations in meteoric waters. Science 133, 1702–1703. Darling W. G. and A ´ rmannsson H. (1989) Stable isotopic aspects of fluid flow in the Krafla, Na´mafjall and Theistareykir geothermal systems of northeast Iceland. Chem. Geol. 76, 197–213. http://dx.doi.org/10.1016/0009-2541(89)90090-9. Delalande M., Bergonzini L., Gherardi F., Guidi M., Andre L., Abdallah I. and Williamson D. (2011) Fluid geochemistry of natural manifestations from the Southern Poroto–Rungwe hydrothermal system (Tanzania): Preliminary conceptual model. J. Volcanol. Geoth. Res. 199, 127–141. http://dx.doi.org/ 10.1016/j.jvolgeores.2010.11.002. Di Napoli R., Aiuppa A. and Allard P. (2014) First Multi-GAS based characterisation of the Boiling Lake volcanic gas (Dominica, Lesser Antilles). Ann. Geophys. 56(5), 2013. Flaathen T. and Gislason S. R. (2007) The effect of volcanic eruptions on the chemistry of surface waters: the 1991 and 2000 eruptions of Mt. Hekla, Iceland. J. Volcanol. Geoth. Res. 164, 293–316. Flaathen T., Gislason S. R., Oelkers E. and Sveinbjornsdottir A. (2009) Chemical evolution of the Mt. Hekla, Iceland, groundwaters: a natural analogue for CO2 sequestration in basaltic rocks. Appl. Geochem. 24, 463–474. Fridriksson T., Kristjansson B. R., Armannsson H., Margretardottir E., Olafsdottir S. and Chiodini G. (2006) CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland. Appl. Geochem. 21, 1551–1569. Friedman I. and O’Neil J. (1977) Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry (ed. M. K. Fleischer). Professional Paper. US Dept. of the Interior, US Geological Survey, p. 60. Geirsson H., LaFemina P., A ´ rnado´ ttir T., Sturkell E., Sigmundsson F., Travis M., Schmidt P., Lund B., Hreinsdo´ ttir S. and Bennett R. (2012) Volcano deformation at active plate boundaries: deep magma accumulation at Hekla volcano and plate boundary deformation in south Iceland. J. Geophys. Res. Solid Earth 117, B11409. Gerlach T. M. (1980) Evaluation of volcanic gas analysis from Surtsey volcano, Iceland 1964–1967. J. Volcanol. Geoth. Res. 8, 191–198. Giggenbach W. F. (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765. Gislason S. R. and Eugster H. P. (1987) Meteoric water-basalt interactions. II: A field study in N.E Iceland. Geochim. Cosmochim. Acta 51, 2841–2855. Gislason S. R. and Oelkers E. (2003) Mechanism, rates, and consequences of basaltic glass dissolution: II. An experimental study of the dissolution rates of basaltic glass as a function of pH and temperature. Geochim. Cosmochim. Acta 67, 3817–3832. Gislason S. R., Andre´sdo´ ttir A., Sveinbjo¨rnsdo´ ttir A ´ ., Oskarsson N., Thordarson T., Torssander P., Novaˆk M. and Zaˆk K. (1992) Local effects of volcanoes on the hydrosphere: example from Hekla, southern Iceland. Water–Rock Interact. Rotterdam, Balkema 1, 477–481. Granieri D., Chiodini G., Marzocchi W. and Avino R. (2003) Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): influence of environmental and volcanic parameters. Earth Planet. Sci. Lett. 212, 167–179. Gronvold K., Larsen G., Einarsson P., Thorarinsson S. and Saemundsson K. (1983) The Hekla eruption 1980–1981. Bull. Volcanologique 46, 349–363. Gudmundsson A., Oskarsson N., Gronvold K., Saemundsson K., Sigurdsson O., Stefansson R., Gislason S. R., Einarsson P., Brandsdottir B., Larsen G., Johannesson H. and Thordarson T. (1992) The 1991 eruption of Hekla, Iceland. Bull. Volcanol. 54, 238–246. Hedenquist J. W. and Lowenstern J. B. (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519– 527. Helgeson H. C. (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions- I. Thermodynamic relations. Geochim. Cosmochim. Acta 32, 853–877. Helgeson H. C. (1979) Mass transfer among minerals and hydrothermal solutions. Geochem. Hydrothermal Ore Deposits 2, 568–610. Helgeson H. C., Garrels R. M. and MacKenzie F. T. (1969) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-II. Applications. Geochim. Cosmochim. Acta 33, 455–481. Herna´ndez P., Pe´rez N., Fridriksson T., Egbert J., Ilyinskaya E., Tha´rhallsson A., I´varsson G., Gı´slason G., Gunnarsson I., Jo´nsson B., Padro´n E., Melia´n G., Mori T. and Notsu K. (2012) Diffuse volcanic degassing and thermal energy release from Hengill volcanic system, Iceland. Bull. Volcanol. 74, 2435– 2448. Hjartarson A ´ . and Sigurðsson F. (2000) Lindir og lindasv ði ı´ Holta- og Landssveit (Open-file report No. OS-2000/054). Orkustofnun – Rannso´knarsvið. Holm N. G., Gislason S. R., Sturkell E. and Torssander P. (2010) Hekla cold springs (Iceland): groundwater mixing with magmatic gases. Isot. Environ. Health Stud. 46, 180–189. Ho¨skuldsson A ´ ., O´ skarsson N., Pedersen R., Gro¨nvold K., Vogfjo¨ rð K. andO´ lafsdo´ ttir R. (2007) The millennium eruption of Hekla in February 2000. Bull. Volcanol. 70, 169–182. Kjartansson E. and Gronvold K. (1983) Location of a magma reservoir beneath Hekla Volcano, Iceland. Nature 301, 139–141. Kristmannsdo´ ttir H. and Sveinbjoernsdo´ ttir A ´ . E. (2012) An anomalous thermal water from Hofsstadir western Iceland: Evidence for past CO2 flushing. Appl. Geochem. 27, 1146–1152. Larsen G., Dugmore A. and Newton A. (1999) Geochemistry of historical-age silicic tephras in Iceland. Holocene 9, 463–471. Marini L. and Gambardella B. (2005) Geochemical modeling of magmatic gas scrubbing. Ann. Geophys. Marty B., Gunnlaugsson E., Jambon A., Oskarsson N., Ozima M., Pineau F. and Torssander P. (1991) Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland. Chem. Geol. 91, 207–225. Matthews A., Fouillac C., Hill R., O’Nions R. K. and Oxburgh E. R. (1987) Mantle-derived volatiles in continental crust: the Massif Central of France. Earth Planet. Sci. Lett. 85, 117–128. Moune S., Gauthier P.-J., Gislason S. R. and Sigmarsson O. (2006) Trace element degassing and enrichment in the eruptive plume of the 2000 eruption of Hekla volcano, Iceland. Geochim. Cosmochim. Acta 70, 461–479. Moune S., Sigmarsson O., Thordarson T. and Gauthier P.-J. (2007) Recent volatile evolution in the magmatic system of Hekla volcano, Iceland. Earth Planet. Sci. Lett. 255, 373–389. Oelkers E. H. (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochim. Cosmochim. Acta 65, 3703–3719. Oelkers E. H., Schott J. and Gı´slason S. (1999) Invited lecture: A general mechanism for multi-oxide solid dissolution and its application to basaltic glass. Geochem. Earth’s Surf. Balkema, Rotterdam, 413–416. Ofeigsson B., Hooper A., Sigmundsson F., Sturkell E. and Grapenthin R. (2011) Deep magma storage at Hekla volcano, Iceland, revealed by InSAR time series analysis. J. Geophys. Res. 116, B05401. O´ lafsson J. and Riley J. P. (1978) Geochemical studies on the thermal brine from Reykjanes (Iceland). Chem. Geol. 21, 219– 237. http://dx.doi.org/10.1016/0009-2541(78)90046-3. Oskarsson N. (1980) The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption. J. Volcanol. Geoth. Res. 8, 251–266. Oskarsson N. (1984) Monitoring of fumarole discharge during the 1975–1982 rifting in Krafla volcanic center, north Iceland. J. Volcanol. Geoth. Res. 22, 97–121. Papale P., Moretti R. and Barbato D. (2006) The compositional dependence of the saturation surface of H2O +CO2 fluids in silicate melts. Chem. Geol. 229, 78–95. Pauwels H., Fouillac C., Goff F. and Vuataz F.-D. (1997) The isotopic and chemical composition of CO2-rich thermal waters in the Mont-Dore region (Massif-Central, France). Appl. Geochem. 12, 411–427. Pope E. C., Bird D. K., Arno´rsson S., Fridriksson T., Elders W. A. and Fridleifsson G. O. (2009) Isotopic constraints on ice age fluids in active geothermal systems: Reykjanes, Iceland. Geochim. Cosmochim. Acta 73, 4468–4488. Poreda R., Craig H., Arno´rsson S. and Welhan J. (1992) Helium isotopes in Icelandic geothermal systems: I. 3He, gas chemistry, and 13C relations. Geochim. Cosmochim. Acta 56, 4221–4228. Rose W., Gu Y., Watson I. M., Yu T., Bluth G., Prata A., Krueger A., Krotkov N., Carn S., Fromm M., Hunton D., Ernst G., Viggiano A., Miller T., Ballenthin J., Reeves J., Wilson J., Anderson B. and Flittner D. (2003) The February–March 2000 eruption of Hekla, Iceland from a satellite perspective. In Volcanism and the Earth’s Atmosphere, Geophysical Monograph, pp. 109–132. Volcanism and the Earth’s Atmosphere, Geophysical Monograph. American Geophysical Union. Sigmundsson F., Einarsson P. and Bilham R. (1992) Magma chamber deflation recorded by the global positioning system: the Hekla 1991 Eruption. Geophys. Res. Lett. 19, 1483–1486. Sigvaldason G. E. and Elisson G. (1968) Collection and analysis of volcanic gases at Surtsey Iceland. Geochim. Cosmochim. Acta 32, 797–805. Soosalu H. and Einarsson P. (2004) Seismic constraints on magma chambers at Hekla and Torfajo¨kull volcanoes, Iceland. Bull. Volcanol. 66, 276–286. Sturkell E., Agustsson K., Linde A. T., Sacks S., Einarsson P., Sigmundsson F., Geirsson H., Pedersen R. and La Femina P. (2005) Geodetic constraints on the magma chamber of the Hekla volcano, Iceland. EOS Transactions, AGU 86, V21D–0636. Sturkell E., A ´ gu´stsson K., Linde A. T., Sacks S. I., Einarsson P., Sigmundsson F., Geirsson H., Pedersen R., LaFemina P. C. andO´ lafsson H. (2013) New insights into volcanic activity from strain and other deformation data for the Hekla 2000 eruption. J. Volcanol. Geoth. Res. 256, 78–86. Sveinbjornsdottir A. E., Coleman M. L. and Yardley B. W. D. (1986) Origin and history of hydrothermal fluids of the Reykjanes and Krafla geothermal fields, Iceland. Contr. Mineral. Petrol. 94, 99–109. http://dx.doi.org/10.1007/ BF00371231. Symonds R. B., Gerlach T. M. and Reed M. H. (2001) Magmatic gas scrubbing: implications for volcano monitoring. J. Volcanol. Geoth. Res. 108, 303–341. Thorarinsson S. (1950) The eruption of Mt. Hekla 1947–1948. Bull. Volcanol. 10, 157–168. Thorarinsson T. (1967) The eruption of Hekla 1947-48. 1-The eruptions of Hekla in historical times, a tephrochronological study. Soc. Sci. Isl., 1–170. Thorarinsson S. and Sigvaldason G. E. (1972) The Hekla Eruption of 1970. Bull. Volcanol. 36, 269–288. Vuataz F. D. and Goff F. (1986) Isotope geochemistry of thermal and nonthermal waters in the Valles Caldera, Jemez Mountains, Northern New Mexico. J. Geophys. Res. 91, 1835–1853. Werner C., Evans W., Kelly P., McGimsey R., Pfeffer M., Doukas M. and Neal C. (2012) Deep magmatic degassing versus scrubbing: Elevated CO2 emissions and C/S in the lead-up to the 2009 eruption of Redoubt Volcano. Alaska. Geochem. Geophys. Geosyst. 13, Q03015. Wolery T. J. (1992) EQ3/6: A software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0). Lawrence Livermore National Laboratory, Livermore, CA. Wolery T. J. and Daveler S. A. (1992) EQ6, a computer program for reaction path modeling of aqueous geochemical systems: theoretical manual, user’s guide and related documentation (Version 7.0). Lawrence Livermore Laboratory, University of California. Wolff-Boenisch D., Gislason S. R., Oelkers E. H. and Putnis C. V. (2004) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74 C. Geochim. Cosmochim. Acta 68, 4843–4858. 0016-7037 http://hdl.handle.net/2122/13983 https://www.sciencedirect.com/science/article/pii/S0016703715000241 doi:10.1016/j.gca.2015.01.013 restricted Hekla Multi-GAS degassing volcanic unrest 04.08. Volcanology article 2015 ftingv https://doi.org/10.1016/j.gca.2015.01.013 https://doi.org/10.1016/j.jvolgeores.2010.11.002. 2022-07-29T06:08:17Z Hekla is a frequently active volcano with an infamously short pre-eruptive warning period. Our project contributes to the ongoing work on improving Hekla’s monitoring and early warning systems. In 2012 we began monitoring gas release at Hekla. The dataset comprises semi-permanent near-real time measurements with a MultiGAS system, quantification of diffuse gas flux, and direct samples analysed for composition and isotopes (δ13C, δD and δ18O). In addition, we used reaction path modelling to derive information on the origin and reaction pathways of the gas emissions. Hekla’s quiescent gas composition was CO2-dominated (0.8 mol fraction) and the δ13C signature was consistent with published values for Icelandic magmas. The gas is poor in H2O and S compared to hydrothermal manifestations and syn-eruptive emissions from other active volcanic systems in Iceland. The total CO2 flux from Hekla central volcano (diffuse soil emissions) is at least 44 T d−1, thereof 14 T d−1 are sourced from a small area at the volcano’s summit. There was no detectable gas flux at other craters, even though some of them had higher ground temperatures and had erupted more recently. Our measurements are consistent with a magma reservoir at depth coupled with a shallow dike beneath the summit. In the current quiescent state, the composition of the exsolved gas is substantially modified along its pathway to the surface through cooling and interaction with wall-rock and groundwater. The modification involves both significant H2O condensation and scrubbing of S-bearing species, leading to a CO2-dominated gas emitted at the summit. We conclude that a compositional shift towards more S- and H2O-rich gas compositions if measured in the future by the permanent MultiGAS station should be viewed as sign of imminent volcanic unrest on Hekla. The research leading to these results has received funding from the Icelandic Centre for Research (RANNIS, grant number 110002-0031); the European Community’s Seventh Framework Programme under Grant Agreement No. ... Article in Journal/Newspaper Hekla Iceland Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Geochimica et Cosmochimica Acta 159 80 99