Determination of stratospheric temperature and density by GOMOS: Verification with respect to high latitude LIDAR profiles from Thule, Greenland

High resolution temperature profiles (HRTP) have been derived from measurements performed by Global Ozone Monitoring by Occultation of Stars (GOMOS) onboard ENVISAT. HRTP are derived from measurements with two fast photometers whose signal is sampled at 1 kHz, and allows investigating the role of ir...

Full description

Bibliographic Details
Published in:AIP Conference Proceedings,
Main Authors: Di Sarra, A., Iannone, R. Q., Casadío, S., Di Biagio, C., Pace, G., Cacciani, M., Muscari, Giovanni, Dehn, A, Bojkov, B
Other Authors: #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia
Format: Conference Object
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/2122/13789
https://doi.org/10.1063/1.4975517
id ftingv:oai:www.earth-prints.org:2122/13789
record_format openpolar
spelling ftingv:oai:www.earth-prints.org:2122/13789 2023-05-15T15:11:22+02:00 Determination of stratospheric temperature and density by GOMOS: Verification with respect to high latitude LIDAR profiles from Thule, Greenland Di Sarra, A. Iannone, R. Q. Casadío, S. Di Biagio, C. Pace, G. Cacciani, M. Muscari, Giovanni Dehn, A Bojkov, B #PLACEHOLDER_PARENT_METADATA_VALUE# Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia 2016-04 http://hdl.handle.net/2122/13789 https://doi.org/10.1063/1.4975517 en eng Radiation processes in the atmosphere and ocean (IRS 2016) 1. M. Ern, F. Ploeger, P. Preusse, J. C. Gille, L. J. Gray, S. Kalisch, M. G. Mlynczak, J. M. Russell III, and M. Riese, J. Geophys. Res. Atmos. 119, 2329–2355 (2014). 2. C. Torrence, and G. P. Compo, Bull. Amer. Meteor. Soc. 79, 61–78 (1998). 3. C. Di Biagio, G. Muscari, A. di Sarra, R. L. de Zafra, P. Eriksen, G. Fiocco, I. Fiorucci, and D. Fuà, J. Geophys. Res. 115, D24315, doi:10.1029/2010JD014070 (2010). 4. R. Q. Iannone, S. Casadio, and B. Bojkov, Annals of Geophysics 57, A0546, 1-12 (2014), doi:10.4401/ag- 6487. http://hdl.handle.net/2122/13789 doi:10.1063/1.4975517 open stratosphere temperature GOMOS 01.01. Atmosphere Conference paper 2016 ftingv https://doi.org/10.1063/1.4975517 https://doi.org/10.1029/2010JD014070 2022-07-29T06:08:13Z High resolution temperature profiles (HRTP) have been derived from measurements performed by Global Ozone Monitoring by Occultation of Stars (GOMOS) onboard ENVISAT. HRTP are derived from measurements with two fast photometers whose signal is sampled at 1 kHz, and allows investigating the role of irregularities in the density and temperature profiles, such as those associated with gravity waves. In this study high resolution temperature and density profiles measured at high latitude by GOMOS are compared with observations made with the ground-based aerosol/temperature LIDAR at Thule, Greenland. The LIDAR at Thule contributes to the Network for the Detection of Atmospheric Composition Change. The LIDAR profiles are analyzed in the height interval overlapping with GOMOS data (22-35 km), and the density and temperature profiles are obtained with 250 m vertical resolution. The comparison is focused on data collected during the 2008-2009 and 2009-2010 Arctic winters. Profiles measured within 6 hours and 500 km are selected. The profiles are classified based on spatial and temporal variability of dynamical indicators over Thule and at the GOMOS tangent height position. Several corresponding features can be identified in the GOMOS and LIDAR profiles, suggesting that the GOMOS HRTP could be used to investigate the global distribution of small scale fluctuations. As an example, two cases corresponding to inner and outer vortex conditions during the 2008-2009 winter are discussed, also in relation with the very intense sudden stratospheric warming occurred in this season. Published New Zealand 5A. Ricerche polari e paleoclima Conference Object Arctic Greenland Thule Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Arctic Greenland New Zealand AIP Conference Proceedings, 1810 060001
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic stratosphere
temperature
GOMOS
01.01. Atmosphere
spellingShingle stratosphere
temperature
GOMOS
01.01. Atmosphere
Di Sarra, A.
Iannone, R. Q.
Casadío, S.
Di Biagio, C.
Pace, G.
Cacciani, M.
Muscari, Giovanni
Dehn, A
Bojkov, B
Determination of stratospheric temperature and density by GOMOS: Verification with respect to high latitude LIDAR profiles from Thule, Greenland
topic_facet stratosphere
temperature
GOMOS
01.01. Atmosphere
description High resolution temperature profiles (HRTP) have been derived from measurements performed by Global Ozone Monitoring by Occultation of Stars (GOMOS) onboard ENVISAT. HRTP are derived from measurements with two fast photometers whose signal is sampled at 1 kHz, and allows investigating the role of irregularities in the density and temperature profiles, such as those associated with gravity waves. In this study high resolution temperature and density profiles measured at high latitude by GOMOS are compared with observations made with the ground-based aerosol/temperature LIDAR at Thule, Greenland. The LIDAR at Thule contributes to the Network for the Detection of Atmospheric Composition Change. The LIDAR profiles are analyzed in the height interval overlapping with GOMOS data (22-35 km), and the density and temperature profiles are obtained with 250 m vertical resolution. The comparison is focused on data collected during the 2008-2009 and 2009-2010 Arctic winters. Profiles measured within 6 hours and 500 km are selected. The profiles are classified based on spatial and temporal variability of dynamical indicators over Thule and at the GOMOS tangent height position. Several corresponding features can be identified in the GOMOS and LIDAR profiles, suggesting that the GOMOS HRTP could be used to investigate the global distribution of small scale fluctuations. As an example, two cases corresponding to inner and outer vortex conditions during the 2008-2009 winter are discussed, also in relation with the very intense sudden stratospheric warming occurred in this season. Published New Zealand 5A. Ricerche polari e paleoclima
author2 #PLACEHOLDER_PARENT_METADATA_VALUE#
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia
format Conference Object
author Di Sarra, A.
Iannone, R. Q.
Casadío, S.
Di Biagio, C.
Pace, G.
Cacciani, M.
Muscari, Giovanni
Dehn, A
Bojkov, B
author_facet Di Sarra, A.
Iannone, R. Q.
Casadío, S.
Di Biagio, C.
Pace, G.
Cacciani, M.
Muscari, Giovanni
Dehn, A
Bojkov, B
author_sort Di Sarra, A.
title Determination of stratospheric temperature and density by GOMOS: Verification with respect to high latitude LIDAR profiles from Thule, Greenland
title_short Determination of stratospheric temperature and density by GOMOS: Verification with respect to high latitude LIDAR profiles from Thule, Greenland
title_full Determination of stratospheric temperature and density by GOMOS: Verification with respect to high latitude LIDAR profiles from Thule, Greenland
title_fullStr Determination of stratospheric temperature and density by GOMOS: Verification with respect to high latitude LIDAR profiles from Thule, Greenland
title_full_unstemmed Determination of stratospheric temperature and density by GOMOS: Verification with respect to high latitude LIDAR profiles from Thule, Greenland
title_sort determination of stratospheric temperature and density by gomos: verification with respect to high latitude lidar profiles from thule, greenland
publishDate 2016
url http://hdl.handle.net/2122/13789
https://doi.org/10.1063/1.4975517
geographic Arctic
Greenland
New Zealand
geographic_facet Arctic
Greenland
New Zealand
genre Arctic
Greenland
Thule
genre_facet Arctic
Greenland
Thule
op_relation Radiation processes in the atmosphere and ocean (IRS 2016)
1. M. Ern, F. Ploeger, P. Preusse, J. C. Gille, L. J. Gray, S. Kalisch, M. G. Mlynczak, J. M. Russell III, and M. Riese, J. Geophys. Res. Atmos. 119, 2329–2355 (2014). 2. C. Torrence, and G. P. Compo, Bull. Amer. Meteor. Soc. 79, 61–78 (1998). 3. C. Di Biagio, G. Muscari, A. di Sarra, R. L. de Zafra, P. Eriksen, G. Fiocco, I. Fiorucci, and D. Fuà, J. Geophys. Res. 115, D24315, doi:10.1029/2010JD014070 (2010). 4. R. Q. Iannone, S. Casadio, and B. Bojkov, Annals of Geophysics 57, A0546, 1-12 (2014), doi:10.4401/ag- 6487.
http://hdl.handle.net/2122/13789
doi:10.1063/1.4975517
op_rights open
op_doi https://doi.org/10.1063/1.4975517
https://doi.org/10.1029/2010JD014070
container_title AIP Conference Proceedings,
container_volume 1810
container_start_page 060001
_version_ 1766342239127076864