NEAMTHM18 Documentation: the making of the TSUMAPS-NEAM Tsunami Hazard Model 2018

The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-East Atlantic, the Mediterranean, and connected Seas (NEAM). In this online data product, the hazard results are provided by hazard curves calcu...

Full description

Bibliographic Details
Main Authors: Basili, Roberto, Brizuela, Beatriz, Herrero, André, Iqbal, Sarfraz, Lorito, Stefano, Maesano, Francesco Emanuele, Murphy, Shane, Perfetti, Paolo, Romano, Fabrizio, Scala, Antonio, Selva, Jacopo, Taroni, Matteo, Tiberti, Mara Monica, Thio, Hong-Kie, Tonini, Roberto, Volpe, Manuela, Glimsdal, Sylfest, Harbitz, Carl Bonnevie, Løvholt, Finn, Baptista, Maria, Fernando, Carrilho, Matias, Luis, Omira, Rachid, Babeyko, Andrey, Hoechner, Andreas, Gurbuz, Mucahit, Pekcan, Onur, Yalciner, Ahmet, Canals, Miquel, Lastras, Galderic, Agalos, Apostolos, Papadopoulos, Gerassimos, Triantafyllou, Ioanna, Benchekroun, Sabah, Agrebi Jaouadi, Hedi, Attafi, Kheireddine, Ben Abdallah, Samir, Bouallegue, Atef, Hamdi, Hassene, Oueslati, Foued
Other Authors: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia, AECOM Technical Services, USA, Norwegian Geotechnical Institute (NGI), Norway, Instituto Português do Mar e da Atmosfera (IPMA), Portugal, Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Portugal, Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum (GFZ), Germany, Middle East Technical University (METU), Turkey, GRC Geociències Marines, Departament de Dinàmica de la Terra I de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Spain, National Observatory of Athens (NOA), Greece, Centre National pour la Recherche Scientifique et Technique (CNRST), Morocco, National Institute of Meteorology (INM), Tunisia
Format: Report
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/2122/12738
https://doi.org/10.5281/zenodo.3406625
http://www.tsumaps-neam.eu/documentation/
id ftingv:oai:www.earth-prints.org:2122/12738
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Europe
NEAM
Atlantic Ocean
Mediterranean Sea
Aegean Sea
Marmara Sea
Black Sea
earthquake
tsunami
moment magnitude
crustal fault
subduction interface
megathrust
probabilistic hazard model
natural hazard
Disaster Risk Reduction
05.08. Risk
04.06. Seismology
03.02. Hydrology
spellingShingle Europe
NEAM
Atlantic Ocean
Mediterranean Sea
Aegean Sea
Marmara Sea
Black Sea
earthquake
tsunami
moment magnitude
crustal fault
subduction interface
megathrust
probabilistic hazard model
natural hazard
Disaster Risk Reduction
05.08. Risk
04.06. Seismology
03.02. Hydrology
Basili, Roberto
Brizuela, Beatriz
Herrero, André
Iqbal, Sarfraz
Lorito, Stefano
Maesano, Francesco Emanuele
Murphy, Shane
Perfetti, Paolo
Romano, Fabrizio
Scala, Antonio
Selva, Jacopo
Taroni, Matteo
Tiberti, Mara Monica
Thio, Hong-Kie
Tonini, Roberto
Volpe, Manuela
Glimsdal, Sylfest
Harbitz, Carl Bonnevie
Løvholt, Finn
Baptista, Maria
Fernando, Carrilho
Matias, Luis
Omira, Rachid
Babeyko, Andrey
Hoechner, Andreas
Gurbuz, Mucahit
Pekcan, Onur
Yalciner, Ahmet
Canals, Miquel
Lastras, Galderic
Agalos, Apostolos
Papadopoulos, Gerassimos
Triantafyllou, Ioanna
Benchekroun, Sabah
Agrebi Jaouadi, Hedi
Attafi, Kheireddine
Ben Abdallah, Samir
Bouallegue, Atef
Hamdi, Hassene
Oueslati, Foued
NEAMTHM18 Documentation: the making of the TSUMAPS-NEAM Tsunami Hazard Model 2018
topic_facet Europe
NEAM
Atlantic Ocean
Mediterranean Sea
Aegean Sea
Marmara Sea
Black Sea
earthquake
tsunami
moment magnitude
crustal fault
subduction interface
megathrust
probabilistic hazard model
natural hazard
Disaster Risk Reduction
05.08. Risk
04.06. Seismology
03.02. Hydrology
description The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-East Atlantic, the Mediterranean, and connected Seas (NEAM). In this online data product, the hazard results are provided by hazard curves calculated at 2,343 Points of Interest (POI), distributed in the North-East Atlantic (1,076 POIs), the Mediterranean Sea (1,130 POIs), and the Black Sea (137 POIs) at an average spacing of ~20 km. For each POI, hazard curves are given for the mean, 2nd, 16th, 50th, 84th, and 98th percentiles. Maps derived from hazard curves are Probability maps for Maximum Inundation Heights (MIH) of 1, 2, 5, 10, 20 meters; Hazard maps for Average Return Periods (ARP) of 500, 1,000, 2,500, 5,000, 10,000 years. For each map, precalculated displays are provided for the mean, the 16th percentile, and the 84th percentile. All data are also made accessible through an interactive web mapper and through Open Geospatial Consortium standard protocols. The model was prepared in the framework of the European Project TSUMAPS-NEAM (http://www.tsumaps-neam.eu/) funded by the mechanism of the European Civil Protection and Humanitarian Aid Operations (grant no. ECHO/SUB/2015/718568/PREV26). European-Union Civil Protection Mechanism, DG-ECHO, Agreement Number ECHO/SUB/2015/718568/PREV26 Published 6T. Studi di pericolosità sismica e da maremoto 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto
author2 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia
AECOM Technical Services, USA
Norwegian Geotechnical Institute (NGI), Norway
Instituto Português do Mar e da Atmosfera (IPMA), Portugal
Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Portugal
Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum (GFZ), Germany
Middle East Technical University (METU), Turkey
GRC Geociències Marines, Departament de Dinàmica de la Terra I de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Spain
National Observatory of Athens (NOA), Greece
Centre National pour la Recherche Scientifique et Technique (CNRST), Morocco
National Institute of Meteorology (INM), Tunisia
format Report
author Basili, Roberto
Brizuela, Beatriz
Herrero, André
Iqbal, Sarfraz
Lorito, Stefano
Maesano, Francesco Emanuele
Murphy, Shane
Perfetti, Paolo
Romano, Fabrizio
Scala, Antonio
Selva, Jacopo
Taroni, Matteo
Tiberti, Mara Monica
Thio, Hong-Kie
Tonini, Roberto
Volpe, Manuela
Glimsdal, Sylfest
Harbitz, Carl Bonnevie
Løvholt, Finn
Baptista, Maria
Fernando, Carrilho
Matias, Luis
Omira, Rachid
Babeyko, Andrey
Hoechner, Andreas
Gurbuz, Mucahit
Pekcan, Onur
Yalciner, Ahmet
Canals, Miquel
Lastras, Galderic
Agalos, Apostolos
Papadopoulos, Gerassimos
Triantafyllou, Ioanna
Benchekroun, Sabah
Agrebi Jaouadi, Hedi
Attafi, Kheireddine
Ben Abdallah, Samir
Bouallegue, Atef
Hamdi, Hassene
Oueslati, Foued
author_facet Basili, Roberto
Brizuela, Beatriz
Herrero, André
Iqbal, Sarfraz
Lorito, Stefano
Maesano, Francesco Emanuele
Murphy, Shane
Perfetti, Paolo
Romano, Fabrizio
Scala, Antonio
Selva, Jacopo
Taroni, Matteo
Tiberti, Mara Monica
Thio, Hong-Kie
Tonini, Roberto
Volpe, Manuela
Glimsdal, Sylfest
Harbitz, Carl Bonnevie
Løvholt, Finn
Baptista, Maria
Fernando, Carrilho
Matias, Luis
Omira, Rachid
Babeyko, Andrey
Hoechner, Andreas
Gurbuz, Mucahit
Pekcan, Onur
Yalciner, Ahmet
Canals, Miquel
Lastras, Galderic
Agalos, Apostolos
Papadopoulos, Gerassimos
Triantafyllou, Ioanna
Benchekroun, Sabah
Agrebi Jaouadi, Hedi
Attafi, Kheireddine
Ben Abdallah, Samir
Bouallegue, Atef
Hamdi, Hassene
Oueslati, Foued
author_sort Basili, Roberto
title NEAMTHM18 Documentation: the making of the TSUMAPS-NEAM Tsunami Hazard Model 2018
title_short NEAMTHM18 Documentation: the making of the TSUMAPS-NEAM Tsunami Hazard Model 2018
title_full NEAMTHM18 Documentation: the making of the TSUMAPS-NEAM Tsunami Hazard Model 2018
title_fullStr NEAMTHM18 Documentation: the making of the TSUMAPS-NEAM Tsunami Hazard Model 2018
title_full_unstemmed NEAMTHM18 Documentation: the making of the TSUMAPS-NEAM Tsunami Hazard Model 2018
title_sort neamthm18 documentation: the making of the tsumaps-neam tsunami hazard model 2018
publishDate 2019
url http://hdl.handle.net/2122/12738
https://doi.org/10.5281/zenodo.3406625
http://www.tsumaps-neam.eu/documentation/
genre North East Atlantic
genre_facet North East Atlantic
op_relation Alasset, P., Hébert, H., Maouche, S., Calbini, V. and Meghraoui, M. (2006), The tsunami induced by the 2003 Zemmouri earthquake (MW= 6.9, Algeria): modelling and results. Geophysical Journal International, 166: 213-226. doi:10.1111/j.1365-246X.2006.02912.x. Ambraseys, N.N. (1962) Data for the investigation of the seismic sea-waves in the Eastern Mediterranean. Bulletin of the Seismological Society of America; 52 (4): 895–913. Aspinall, W.P., Cooke, R.M., 2013. Quantifying scientific uncertainty from expert judgement elicitation, in “Risk and Uncertainty Assessment for Natural Hazards” (Eds J. Rougier, L. Hill, R.S.J. Sparks), Cambridge University Press, Cambridge, UK, ISBN 978-1-107-00619-5. Bakırcı T., Yoshizawa K., Özer M. F. (2012). Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography, Geophysical Journal International, 190(2), 1058–1076, https://doi.org/10.1111/j.1365-246X.2012.05526.x. Barbosa, S. M., Fernandes, M. J., Silva, M. E. (2004). Nonlinear sea level trends from European tide gauge records. Annales Geophysicae, 22, 1465–1472. Basili R, Volpe M, Maesano FE, Tiberti MM, Lorito S, Romano F, Tonini R (2017). Influence of seismogenic source geometrical accuracy on PTHA: a test case for the Calabrian subduction interface, Geophysical Research Abstracts, Vol. 19, EGU2017-18872-1, EGU General Assembly 2017. Basili R., Kastelic V., Demircioglu M. B., Garcia Moreno D., Nemser E. S., Petricca P., Sboras S. P., Besana-Ostman G. M., Cabral J., Camelbeeck T., Caputo R., Danciu L., Domac H., Fonseca J., García-Mayordomo J., Giardini D., Glavatovic B., Gulen L., Ince Y., Pavlides S., Sesetyan K., Tarabusi G., Tiberti M. M., Utkucu M., Valensise G., Vanneste K., Vilanova S., Wössner J. (2013). The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE. http://diss.rm.ingv.it/share-edsf/, doi:10.6092/INGV.IT-SHARE-EDSF. Basili, R., and M. M. Tiberti (2016). New statistics of earthquake-fault dip angles. Paper ESC2016-447, presented at the 35th General Assembly of the European Seismological Commission, Trieste, 4-10 September 2016. Basili, R., M. M. Tiberti, V. Kastelic, F. Romano, A. Piatanesi, J. Selva, S. Lorito (2013). Integrating geologic fault data into tsunami hazard studies, Nat. Hazards Earth Syst. Sci., 13(4), 1025-1050, doi:10.5194/nhess-13-1025-2013. Bazzurro P, Cornell C (1999). Disaggregation of seismic hazard, Bull. Seismol. Soc. Am., 89(2), 501–520. Berryman K., Wallace L., Hayes G., Bird P., Wang K., Basili R., Lay T., Pagani M., Stein R., Sagiya T., Rubin C., Barreintos S., Kreemer C., Litchfield N., Stirling M., Gledhill K., Haller K., Costa C. (2015). The GEM Faulted Earth Subduction Interface Characterisation Project, Version 2.0, April 2015, GEM Faulted Earth Project, available from http://www.nexus.globalquakemodel.org/gem-faulted-earth/posts. Bilek S. L. & Lay T. (1999). Rigidity variations with depth along interpolate megathrust faults in subduction zones. Nature, 400, 443-446. https://doi.org/10.1038/22739. Bird, P. (2003) An updated digital model of plate boundaries, Geochem Geophys Geosys 4(3), 1027, doi:10.1029/2001GC000252. Blaser, L., Krüger, F., Ohrnberger, M., Scherbaum, F., 2010. Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America 100, 2914-2926, doi:10.1785/0120100111. Bommer JJ (2012). Challenges of Building Logic Trees for Probabilistic Seismic Hazard Analysis, EARTHQUAKE SPECTRA, Vol: 28, 1723-1735, ISSN: 8755-2930. Bommer, J.J., Scherbaum, F. (2008). The use and misuse of logic trees in Probabilistic Seismic Hazard Analysis, Earthq. Spectra, 24(4), 997–1009. Boyd, O. S. (2012). Including foreshocks and aftershocks in time-independent probabilistic seismic-hazard analyses, Bull. Seismol.Soc. Am. 102, 909–917. Burridge, R., (1973). Admissible Speeds for Plane-Strain Self-Similar Shear Cracks With Friction but Lacking Cohesion, Geophysical Journal International Vol. 35(4): 439–455. doi:10.1111/j.1365-246X.1973.tb00608.x. Campbell KW (1982), Bayesian analysis of extreme earthquake occurrences. Part I. Probabilistic hazard model, Bulletin of the Seismological Society of America, Vol. 72, No. 5, pp. 1689-1705, October 1982 Carafa, M.M.C., Kastelic, V., Bird, P., Maesano, F.E. & Valensise, G., 2018. A “geodetic” gap in the Calabrian Arc: evidence for a locked subduction megathrust? Geophys. Res. Lett., 45(4), 1794–1804. Casarotti, E., M. Stupazzini, S. J. Lee, D. Komatitsch, A. Piersanti, and J. Tromp (2008), CUBIT and Seismic Wave Propagation Based Upon the Spectral-element Method: An Advanced unstructured Mesher for Complex 3D Geological Media, in Proceedings of the 16th International Meshing Roundtable, M. L. Brewer and D. Marcum (Editors), Springer, New York. (session 5B) pp. 579--597, doi:10.1007/978-3-540-75103-8_32. Choi, B.H., Pelinovsky, E., Ryabov, I., Hong, S.J. (2002). Distribution Functions of Tsunami Wave Heights. Natural Hazards, 25(1), doi:10.1023/A:1013379705323. Christophersen, A., Berryman, K., Litchfield, N. (2015) The GEM Faulted Earth Project, Version 1.0, April 2015, GEM Faulted Earth Project, doi:10.13117/GEM.GEGD.TR2015.02. Collettini, C. & Sibson, R.H. (2001). Normal faults, normal friction?, Geology, 29, 927-930. Cooke, R. M. (1991). Experts in Uncertainty: Opinion and Subjective Probability in Science,” Oxford University Press, Oxford. Cooke, R.M. and Goossens, L.H.J. (2000), “A Procedures Guide for Structured Expert Judgment,” EUR 18820, European Commission Report. Cornell C (1968): Engineering seismic risk analysis, Bull. Seismol. Soc. Am. 58:1583–1606. Davies G, Griffin J, Løvholt F, Glymsdal S, Harbitz C, Thio HK, Lorito S, Basili R, Selva J, Geist E, Baptista MA (2018). A global probabilistic tsunami hazard assessment from earthquake sources. From: Scourse, E. M., Chapman, N. A., Tappin, D. R. & Wallis, S. R. (eds) Tsunamis: Geology, Hazards and Risks. Geological Society, London, Special Publications, 456, https://doi.org/10.1144/SP456.5. DCDPC (Decreto del Capo Dipartimento della Protezione Civile) 2018, Indicazioni alla Componenti ed alle Strutture operative del Servizio nazionale di protezione civile per l’aggiornamento delle pianificazioni di protezione civile per il rischio maremoto, Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile, Reportorio n 3976 del 10/10/2018 De la Asunción, M., Castro, M. J., Fernández-Nieto, E. D., Man- tas, J. M., Ortega Acosta, S.,González Vida, J. M. (2013) Efficient GPU implementation of a two waves TVD-WAF method for the two-dimensional one layer shallow water system on structured meshes, Comput. Fluids, 80, 441–452 Delavaud E., Cotton F., Akkar S., Scherbaum F., Danciu L., Beauval C., Drouet S., Douglas J., Basili R., Sandikkaya M., Segou M., Faccioli E., Theodoulidis N. (2012). Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. Journal of Seismology, 16(3), 451-473, doi:10.1007/s10950-012-9281-z. Di Giacomo, D., E.R. Engdahl and D.A. Storchak (2018). The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project, Earth Syst. Sci. Data, 10, 1877-1899, doi:10.5194/essd-10-1877-2018. DISS Working Group (2018). Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, Istituto Nazionale di Geofisica e Vulcanologia; DOI:10.6092/INGV.IT-DISS3.2.1. Duarte, J.C., Rosas, F.M., Terrinha, P., Schellart, W.P., Boutelier, D., Gutscher, M-A., Ribeiro A. (2013). Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin. Geology, 41 (8): 839–842. doi: https://doi.org/10.1130/G34100.1. Dziewonski, A.M. & Anderson, D.L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25 (4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7. Dziewonski, A.M., T.A. Chou, and J.H. Woodhouse (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, Journal of Geophysical Research, 86(B4), 2825, doi:10.1029/JB086iB04p02825. Egbert, G.D., and S.Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 19(2), 183-204. Ekström, G., M. Nettles, and A.M. Dziewoński (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Physics of the Earth and Planetary Interiors, 200-201, 1-9, doi:10.1016/j.pepi.2012.04.002. Eshelby, J. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. London, Series A 241, 376–396. doi:10.1098/rspa.1957.0133 (1957). Field Edward H., Ramon J. Arrowsmith, Glenn P. Biasi, Peter Bird, Timothy E. Dawson, Karen R. Felzer, David D. Jackson, Kaj M. Johnson, Thomas H. Jordan, Christopher Madden, Andrew J. Michael, Kevin R. Milner, Morgan T. Page, Tom Parsons, Peter M. Powers, Bruce E. Shaw, Wayne R. Thatcher, Ray J. Weldon, Yuehua Zeng (2014) Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The Time‐Independent Model. Bulletin of the Seismological Society of America; 104 (3): 1122–1180. doi:10.1785/0120130164. Field, E. H., Jordan, T. H., Page, M. T., Milner, K. R., Shaw, B. E., Dawson, T. E., Biasi, G. P., Parsons, T., Hardebeck, J. L., & Michael, A. J. ( 2017). A synoptic view of the third uniform California earthquake rupture forecast (UCERF3). Seismological Research Letters, 88, 5, 1259– 1267, doi:10.1785/0220170045. Forman, E. & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108(1), 165-169. Frankel, A. (1995). Mapping seismic hazard in the central and eastern United States. Seismological Research Letters, 66(4), 8-21. Fraser SA, Power WL (2013). Validation of a GIS-based attenuation rule for indicative tsunami evacuation zone mapping. GNS Science Report 2013/02. Lower Hutt. 21 p. Gailler A, Hébert H, Schindelé F, Reymond D (2018) Coastal amplification laws for the french tsunami warning center: Numerical modeling and fast estimate of tsunami wave heights along the French riviera. Pure and Applied Geophysics 175(4):1429–1444, DOI 10.1007/s00024-017-1713-9, URL https: //doi.org/10.1007/s00024-017-1713-9 Ganas, A., and Parsons, T. (2009). Three‐dimensional model of Hellenic Arc deformation and origin of the Cretan uplift. Journal of Geophysical Research: Solid Earth, 114(B6), 10.1029/2008JB005599. Gardner, J. K., and L. Knopoff (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America; 64 (5): 1363–1367. Geist E. L. & Bilek S. L. (2001). Effect of depth-dependent shear modulus on tsunami generation along subduction zones. Geophysical Research Letters, 28 (7), 1315-1318. https://doi.org/10.1029/2000GL012385. Geist EL, Lynett P J (2014) Source processes for the probabilistic assessment of tsunami hazards, Oceanography, 27, 86–93. Geist, E. L. and Parsons, T. (2006). Probabilistic Analysis of Tsunami Hazards, Nat. Hazards, 37, 277–314, doi:10.1007/s11069-005-4646z. Geist, E.L., and Parsons, T., 2016, Reconstruction of far-field tsunami amplitude distributions from earthquake sources: Pure and Applied Geophysics, v. 173, p. 3703-3717, doi:10.1007/s00024-00016-01288-x. GEM (2018). The OpenQuake-engine User Manual. Global Earthquake Model (GEM) OpenQuake Manual for Engine version 3.2.0. doi:10.13117/GEM.OPENQUAKE.MAN.ENGINE.3.2.0, 189 pages. Giardini D., J. Woessner, L. Danciu, H. Crowley, F. Cotton, G. Gruenthal, R. Pinho, G. Valensise, S. Akkar, R. Arvidsson, R. Basili, T. Cameelbeck, A. Campos-Costa, J. Douglas, M.B. Demircioglu, M. Erdik, J. Fonseca, B. Glavatovic, C. Lindholm, K. Makropoulos, F. Meletti, R. Musson, K. Pitilakis, K. Sesetyan, D. Stromeyer, M. Stucchi, A. Rovida (2013). Seismic Hazard Harmonization in Europe (SHARE): Online Data Resource, doi:10.12686/SED-00000001-SHARE. Glimsdal, S., Løvholt, F., Harbitz, C.B., Romano, F., Lorito, S., Orefice, S., Brizuela, B., Selva, J., Hoechner, A., Volpe, M., Babeyko, A., Tonini, R., Wronna, M., Omira, R. (2019). A New Approximate Method for Quantifying Tsunami Maximum Inundation Height Probability. Pure Appl. Geophys, https://doi.org/10.1007/s00024-019-02091-w. Goepel, K.D. (2013), IMPLEMENTING THE ANALYTIC HIERARCHY PROCESS AS A STANDARD METHOD FOR MULTI-CRITERIA DECISION MAKING IN CORPORATE ENTERPRISES – A NEW AHP EXCEL TEMPLATE WITH MULTIPLE INPUTS, Proceedings of the International Symposium on the Analytic Hierarchy Process 2013. González, F. I., E. L. Geist B. Jaffe U. Kânoğlu H. Mofjeld C. E. Synolakis V. V. Titov D. Arcas D. Bellomo D. Carlton T. Horning J. Johnson J. Newman T. Parsons R. Peters C. Peterson G. Priest A. Venturato J. Weber F. Wong A. Yalciner (2009), Probabilistic tsunami hazard assessment at Seaside, Oregon, for near‐ and far‐field seismic sources, J. Geophys. Res., 114, C11023, doi:10.1029/2008JC005132. Grezio A, Babeyko A, Baptista MA, Behrens J, Costa A, Davies G, Geist EL, Glimsdal S, González FI, Griffin J, Harbitz CB, LeVeque RJ, Lorito S, Løvholt F, Omira R, Mueller C, Paris R, Parsons T, Polet J, Power W, Selva J, Sørensen M, Thio HK (2017). Probabilistic Tsunami Hazard Analysis: Multiple sources and global applications. Reviews of Geophysics, 55. https://doi.org/10.1002/2017RG000579. Grezio, A., Babeyko A., Baptista M.A., Behrens, J., Costa, A., Davies, G., Geist, E.L., Glimsdal, S., González, F. I., Griffin, J., Harbitz, C.B., Le Veque, R.J., Lorito, S., Løvholt, F., Omira, R., Mueller, C., Paris, R., Parsons, T., Polet, J., Power, W., Selva, J.,Sørensen, M.B., Thio, H.K. (2017). Probabilistic Tsunami Hazard Analysis: Multiple sources and global applications. Reviews of Geophysics, 55, 1158–1198. https://doi.org/10.1002/2017RG000579 Grünthal G. and R. Wahlström (2012). The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. Journal of Seismology, 16, 535-570, doi 10.1007/s10950-012-9302-y. Gutscher, M.A., Malod, J., Rehault, J.P., Contrucci, I., Klingelhoefer, F., Mendes-Victor, L., and Spakman, W. (2002). Evidence for active subduction beneath Gibraltar. Geology, v. 30, p. 1071–1074. Harker, P. & Vargas L. (1987), The Theory of Ratio Scale Estimation: Saaty's Analytic Hierarchy Process. Management Science. 33(11), 1383–1403. Hayes G.P., G.L. Moore, D.E. Portner, M. Hearne, H. Flamme, M. Furtney, G.M. Smoczyk (2018). Slab2, a comprehensive subduction zone geometry model. Science, 10.1126/science.aat4723. Hayes, G. (2018). Slab2 - A Comprehensive Subduction Zone Geometry Model: U.S. Geological Survey data release, https://doi.org/10.5066/F7PV6JNV. Hayes, G. P., Wald, D. J. & Johnson, R. L. (2012) Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth 117, n/a-n/a, doi:10.1029/2011jb008524. Heinrich P., Schindele F., & Guibourg S. (1998). Modeling of the February 1996 Peruvian tsunami. Geophysical Reasearch Letters, 25, 2687-2690. https://doi.org/10.1029/98GL01780. Herrero A, Murphy S, Lorito S, Romano F, Volpe M (2017). The influence of complex fault geometry and slip of large subduction earthquakes on tsunami generation, Geophysical Research Abstracts Vol. 19, EGU2017-14724-1, EGU General Assembly 2017. Herrero A, Murphy S, Lorito S, Romano F, Volpe M (2017). The influence of complex fault geometry and slip of large subduction earthquakes on tsunami generation, Geophysical Research Abstracts Vol. 19, EGU2017-14724-1, EGU General Assembly 2017. Herrero A., Murphy S., Complex slip distributions on complex fault geometries. SSA meeting, Denver 17-21 april. (2017). Herrero A., S Murphy (2018). Self-similar slip distributions on irregular shaped faults, Geophysical Journal International, 213(3), 2060–2070, https://doi.org/10.1093/gji/ggy104 Herrero, A. & Bernard, P. A Kinematic Self-Similar Rupture Process for Earthquakes. Bull. Seismol. Soc. Am. 84(No. 4), 1216–1228 (1994). Hiemer, S., J. Woessner, R. Basili, L. Danciu, D. Giardini, and S. Wiemer (2014), A smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europe, Geophys. J. Int., 198, 1159-1172, doi:10.1093/gji/ggu186. Howell A., Jackson J., Copley A., McKenzie D., Nissen E. (2017). Subduction and vertical coastal motions in the eastern Mediterranean, Geophysical Journal International, 211(1), 593–620, https://doi.org/10.1093/gji/ggx307. Ichinose, G.A., 2006. Moment Tensor and Rupture Model for the 1949 Olympia, Washington, Earthquake and Scaling Relations for Cascadia and Global Intraslab Earthquakes. Bulletin of the Seismological Society of America 96, 1029-1037, doi:10.1785/0120050132. Iervolino, I., M. Giorgio, and B. Polidoro (2012). Probabilistic seismic haz-ard analysis for seismic sequences, in Vienna Congress on RecentAdvances in Earthquake Engineering and Structural Dynamics2013, C. Adam, R. Heuer, W. Lenhardt, and C. Schranz (Editors),28–30 August 2013, Vienna, Austria, Paper No. 66 ISC - International Seismological Centre (2016), On-line Bulletin, http://www.isc.ac.uk, Internatl. Seismol. Cent., Thatcham, United Kingdom. Kagan, Y. Y. (2002a). Seismic moment distribution revisited: I. Statistical results, Geophys. J. Int., 148, 520–541, doi:10.1046/j.1365-246x.2002.01594.x. Kagan, Y. Y. (2002b). Seismic moment distribution revisited: II. Moment conservation principle, Geophys. J. Int., 149, 731–754, doi:10.1046/j.1365-246X.2002.01671.x. Kagan, Y.Y., Bird, P., Jackson, D.D. (2010) Earthquake Patterns in Diverse Tectonic Zones of the Globe, Pure Appl. Geophys., 167(6), 721-741, doi:10.1007/s00024-010-0075-3. Kajiura, K. (1963). The leading wave of a tsunami, Bull. Earthquake Res. Inst. Univ., Tokyo, 41, 535–571. Kamigaichi O., “Tsunami Forecasting and Warning,” Encyclopedia of Complexity and System Science, Springer., pp. 9592-9618, 2009. https://doi.org/10.1007/978-1-4419-7695-6 Keller M., Pasanisi A., Marcilhac M., Yalamas T., Secanell R., and Senfaute G. (2014), A Bayesian Methodology Applied to the Estimation of Earthquake Recurrence Parameters for Seismic Hazard Assessment, Qual. Reliab. Engng. Int., 30, 921–933, doi:10.1002/qre.1735 Kriebel D. L., Lynett P. J., Cox D. T., Petroff C. M., Robertson I. N. and Chock G. Y. K.; 2017: Energy method for approximating energy overland tsunami flows. J. Waterway, Port, Coastal, Ocean Eng., 143(5), http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000393. Laigle, M., Sachpazi, M., & Hirn, A. (2004). Variation of seismic coupling with slab detachment and upper plate structure along the western Hellenic subduction zone. Tectonophysics, 391(1-4), 85-95, 10.1016/j.tecto.2004.07.009. Laske, G., G. Masters., Z. Ma, and M. Pasyanos (2013), Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658. Lay, T., Kanamori, H., Ammon, C.J., Koper, K.D., Hutko, A.R., Ye, L., Yue, H., Rushing, T.M., 2012. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. 117, B04311. http://dx.doi.org/10.1029/2011JB009133. Leonard, M., 2010. Earthquake Fault Scaling: Self-Consistent Relating of Rupture Length, Width, Average Displacement, and Moment Release. Bulletin of the Seismological Society of America 100, 1971-1988, http://dx.doi.org/10.1785/0120090189. Leonard, M., 2014. Self-Consistent Earthquake Fault-Scaling Relations: Update and Extension to Stable Continental Strike-Slip Faults. Bulletin of the Seismological Society of America, doi:10.1785/0120140087. Lorito, S., Selva J., Basili R., Romano, F., Tiberti, M. M., and Piatanesi, A (2015). Probabilistic Hazard for Seismically-Induced Tsunamis: Accuracy and Feasibility of Inundation Maps, Geophys. J. Int., 200, 574–588, https://doi.org/10.1093/gji/ggu408 Løvholt F, Glimsdal S, Harbitz CB, Nadim F, Zamora N, Peduzzi P, Dao HI, Smebye H (2012). Tsunami hazard and exposure on the global scale, Earth-Science Reviews, Volume 110, Issues 1–4, Pages 5873, ISSN 0012-8252, 10.1016/j.earscirev.2011.10.002. Løvholt F, Griffin J, Salgado-Galvez M (2015). Tsunami Hazard and Risk Assessment on the Global Scale, R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, Springer, DOI 10.1007/978-3-642-27737-5_642-1. Løvholt, F., Griffin, J., & Salgado-Gálvez, M. (2015). Tsunami Hazard and Risk Assessment on the Global Scale (pp. 1–34). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/ 10.1007/978-3-642-27737-5_642-1. Macías, J., Castro, M. J., Ortega, S., Escalante, C., & González-Vida, J. M. (2017). Performance benchmarking of tsunami-HySEA model for NTHMP’s inundation mapping activities. Pure and Applied Geophysics. doi:10.1007/s00024-017-1583-1. Macías, J., Mercado, A., González-Vida, J. M., Ortega, S., & Castro, M. J. (2016). Comparison and computational performance of Tsunami-HySEA and MOST models for LANTEX 2013 scenario: Impact assessment on Puerto Rico coasts. Pure and Applied Geophysics, 173(12), 3973–3997. doi:10.1007/s00024-016-1387-8. Maesano, F. E., Tiberti, M. M., and Basili, R., 2017, The Calabrian Arc: three-dimensional modelling of the subduction interface: Sci Rep, v. 7, no. 1, doi:10.1038/s41598-017-09074-8. Mai P. M. & Thingbaijam K. K. S. (2014). SRCMOD: An online database of finte fault-fault rupture models. Seismological Research Letters, 85(6), 1348-1357. https://doi.org/10.1785/0220140077. Maramai A., Brizuela B., Graziani L. (2014) The Euro-Mediterranean Tsunami Catalogue, Annals of Geophysics, 57, 4, S0435; doi:10.4401/ag-6437. Marzocchi, W., Taroni, M., Selva, J., 2015. Accounting for epistemic uncertainty in PSHA: logic tree and ensemble modeling. Bulletin of the Seismological Society of America, 105(4), 2151-2159. MCDEM (2016) - Tsunami Evacuation Zones- Director’s Guideline for Civil Defence Emergency Management Groups [DGL 08/16] February 2016 . ISBN 978-0-478-43515-3. Published by the Ministry of Civil Defence & Emergency Management – New Zealand Meade, B. J. (2007), Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space, Comput. Geosci., 33, 1064–1075, doi:10.1016/j.cageo.2006.12.00. Meade, B. J. (2007), Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space, Comput. Geosci., 33, 1064–1075, doi:10.1016/j.cageo.2006.12.00. Miranda, J. M., Luis, J. F., Reis, C., Omira, R., and Baptista, M. A.: Validation of NSWING, a multi-core finite difference code for tsunami propagation and run-up, Paper Number S21A-4390, Session Number and Title S21A, Natural Hazards, American Geophysical Union (AGU) Fall Meeting, San Francisco, 2014. Molinari I, Tonini R, Lorito S, Piatanesi A, Romano F, Melini D, Hoechner A, Gonzàlez Vida JM, Maciás J, Castro MJ, de la Asunción M (2016). Fast evaluation of tsunami scenarios: uncertainty assessment for a Mediterranean Sea database, Nat. Hazards Earth Syst. Sci., 16, 2593-2602, doi:10.5194/nhess16-2593-2016. Morgan, M.G. (2014). Use (and abuse) of expert elicitation in support of decision making for public policy, Proc. Nat. Acad. Sci. 111(20); 7176-7184, DOI:10.1073/pnas.1319946111 Murotani, S., Miyake, H., Koketsu, K., 2008. Scaling of characterized slip models for plate-boundary earthquakes. Earth Planets Space 60, 987-991. Murotani, S., Satake, K., Fujii, Y., 2013. Scaling relations of seismic moment, rupture area, average slip, and asperity size forM~9 subduction-zone earthquakes. Geophysical Research Letters 40, 5070-5074, doi:10.1002/grl.50976. Murphy, S., Scala, A., Herrero, A., Lorito, S., Festa, G., Trasatti, E., Tonini, R., Romano, F., Molinari, I., Nielsen, S., (2016) Shallow slip amplification and enhanced tsunami hazard unravelled by dynamic simulations of mega-thrust earthquakes. Sci. Rep. 6, 35007; doi:10.1038/srep35007. Musson, R. M. W. (2012). On the nature of logic trees in probabilistic seismic hazard assessment, Earthq. Spectra 28, 1291–1296. Nijholt N., Govers R., Wortel R. (2018). On the forces that drive and resist deformation of the south-central Mediterranean: a mechanical model study, Geophysical Journal International, 214(2), 876–894, https://doi.org/10.1093/gji/ggy144. Nosov, M.A. & Kolesov, S.V. (2011). Optimal Initial Conditions for Simulation of Seismotectonic Tsunamis, Pure Appl. Geophys. 168: 1223. doi:10.1007/s00024-010-0226-6. Novotni, M. & Klein, R. Computing geodesic distances on triangular meshes. The 10-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2002 (WSCG 2002). Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82, 1018–1040. Pacheco, J. F., and L. R. Sykes (1992), Seismic moment catalog of large shallow earthquakes, 1900 to 1989, Bull. Seismol. Soc. Am., 82, 1306 – 1349. Papadopoulos G. A., E. Gràcia, R. Urgeles, V. Sallares, P.M. De Martini, D. Pantosti, M. González, A. C. Yalciner, J. Mascle, D. Sakellariou, A. Salamon, S. Tinti, V. Karastathis, A. Fokaefs, A. Camerlenghi, T. Novikova and A. Papageorgiou, 2014. Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Marine Geology, 2014, DOI:10.1016/ j.margeo.2014.04.014. Piatanesi, A. and Tinti, S. (2002), Numerical modeling of the September 8, 1905 Calabrian (southern Italy) tsunami. Geophys. Journ. Intern., Vol. 150, No. 1, pp. 271-284. Pondrelli S. and Salimbeni S. (2015). Regional Moment Tensor Review: An Example from the European Mediterranean Region. In Encyclopedia of Earthquake Engineering (pp. 1-15), http://link.springer.com/referenceworkentry/10.1007/978-3-642-36197-5_301-1, Springer Berlin Heidelberg. Power, W., Wang, X., Lane, E., Gillibrand, P. (2013). A Probabilistic Tsunami Hazard Study of the Auckland Region, Part I: Propagation Modelling and Tsunami Hazard Assessment at the Shoreline. Pure Appl. Geophys. 170: 1621. https://doi.org/10.1007/s00024-012-0543-z Romanowicz, B., Ruff, L.J., 2002. On moment-length scaling of large strike slip earthquakes and the strength of faults. Geophysical Research Letters 29, 45-41-45-44, doi:10.1029/2001GL014479. Rougier, J., R. Sparks, and L. J. Hill (2013), Risk assessment and uncertainty in natural hazards, in Risk and Uncertainty Assessment for Natural Hazards, edited by J. C. Rougier, R. S. J. Sparks, and L. J. Hill, pp. 1–18, Cambridge Univ. Press, Cambridge, U. K. Ruiz, J. A., Baumont, D., Bernard, P. & Berge-Thierry, C. Modelling directivity of strong ground motion with a fractal, k− 2, kinematic source model. Geophys. J. Int. 186, 226–244, doi:10.1111/j.1365- 246X.2011.05000.x (2011). Saaty, T.L. (1980), The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, ISBN 0-07-054371-2, McGraw-Hill. Saaty, T.L., Hu G. (1998), Ranking by Eigenvector Versus Other Methods in the Analytic Hierarchy Process, Appl. Math. Lett. Vol. 11, No. 4, pp. 121-125, 1998. Sachpazi, M., Laigle, M., Charalampakis, M., Diaz, J., Kissling, E., Gesret, A., Becel, A., Flueh, E., Miles, P., and Hirn, A. (2016). Segmented Hellenic slab rollback driving Aegean deformation and seismicity. Geophysical Research Letters, 43(2), 651-658, doi:10.1002/2015GL066818. Salaün G., Pedersen H.A., Paul A., Farra V., Karabulut H., Hatzfeld D., Papazachos C., Childs D.M., Pequegnat C., and SIMBAAD Team (2012). High-resolution surface wave tomography beneath the Aegean-Anatolia region: constraints on upper-mantle structure, Geophysical Journal International, 190(1), 406–420, https://doi.org/10.1111/j.1365-246X.2012.05483.x. Satake K. (1995). Linear and nonlinear computation of the 1992 Nicaragua earthquake tsunami, Pure and Applied Geophysics, 144, 455-470. https://doi.org/10.1007/BF00874378. Scala A, Lorito S, Romano F, Murphy S, Selva J, Basili R, Babeyko A, Herrero A, Hoechner A, Løvholt F, Maesano FE, Perfetti P, Tiberti MM, Tonini R, Volpe M, Davies G, Festa G, Power W, Piatanesi A (2019) Effect of shallow slip amplification uncertainty on probabilistic tsunami hazard analysis in subduction zones: use of long-term balanced stochastic slip models, submitted Sellier N.C., Loncke L., Vendeville B.C., Mascle J., Zitter T., Woodside J., Loubrieu B. (2013a). Post-Messinian evolution of the Florence Ridge area (Western Cyprus Arc), Part I: Morphostructural analysis,Tectonophysics, 591, https://doi.org/10.1016/j.tecto.2012.04.001. Sellier N.C., Vendeville B.C., Loncke L. (2013b). Post-Messinian evolution of the Florence Rise area (Western Cyprus Arc) Part II: Experimental modeling, Tectonophysics, 591, 143-151, https://doi.org/10.1016/j.tecto.2011.07.003. Selva J, Costa A, Marzocchi W, Sandri L (2010), BET_VH: exploring the influence of natural uncertainties on long-term hazard from tephra fallout at Campi Flegrei (Italy) , Bull. Volcanol. 72(6): 705-716. Selva J, Lorito S, Basili R, Tonini R, Tiberti MM, Romano F, Perfetti P, Volpe M (2017). On the use of faults and background seismicity in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA), Geophysical Research Abstracts Vol. 19, EGU2017-17395-1, EGU General Assembly 2017. Selva J, Marzocchi W (2004), Focal parameters, depth estimation and plane selection of the worldwide shallow seismicity with Ms >= 7.0 for the period 1900-1976. G-cubed, 5, Q05005, doi:10.1029/2003GC000669. Selva J, Sandri L (2013), Probabilistic Seismic Hazard Assessment: Combining Cornell-like approaches and data at sites through Bayesian inference , Bull. Seism. Soc. Am., 103(3):1709-1722, DOI:10.1785/0120120091 Selva J., S. Iqbal, F. Cotton, D. Giardini, S. Esposito, B. Stojadinovic, S. Argyroudis, K. Pitilakis, A. Mignan, and S. Lorito (in prep). Management of subjectivity in probabilistic single/multi-hazard/risk assessments: a Multiple-Expert Management Protocol (MEM-Pr). Selva J., Tonini R., Molinari I., Tiberti M.M., Romano F., Grezio A., Melini D., Piatanesi A., Basili R., Lorito S. (2016). Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA). Geophys. J. Int., 205, 1780-1803, doi:10.1093/gji/ggw107. Selva, J. et al. (2015). Report on the effects of epistemic uncertainties on the definition of LP-HC events. Deliverable 3.1 STREST Project. Selva, J., Marzocchi, W., Papale, P., & Sandri, L. (2012). Operational eruption forecasting at high-risk volcanoes: the case of Campi Flegrei, Naples. Journal of Applied Volcanology, 1(1), 1. Shaw B., Jackson J. (2010). Earthquake mechanisms and active tectonics of the Hellenic subduction zone, Geophysical Journal International, 181(2), 966–984, https://doi.org/10.1111/j.1365-246X.2010.04551.x. Sibson, R.H. & Xie, G. (1998). Dip Range for Intracontinental Reverse Fault Ruptures: Truth Not Stranger than Friction?, Bulletin of the Seismological Society of America, 88, 1014-1022. Skarlatoudis, A.A., Somerville, P.G., Thio, H.K., 2016. Source‐Scaling Relations of Interface Subduction Earthquakes for Strong Ground Motion and Tsunami Simulation. Bulletin of the Seismological Society of America 106, 1652-1662, doi:10.1785/0120150320. Sodoudi, F., Brüstle, A., Meier, T., Kind, R., Friederich, W., and Egelados Working Group. (2015). Receiver function images of the Hellenic subduction zone and comparison to microseismicity. Solid Earth, 6(1), 135-151, doi:10.5194/se-6-135-2015. Sørensen, M. B., Spada, M., Babeyko, A., Wiemer, S., and Grünthal, G. (2012). Probabilistic tsunami hazard in the Mediterranean Sea, J. Geophys. Res., 117, B01305, doi:10.1029/2010JB008169. SSHAC (Senior Seismic Hazard Analysis Committe), 1997. Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts, U.S. Nuclear Regulatory Commission Report NUREG/CR-6372. SSHAC 2012: USNRC (U.S. Nuclear Regulatory Commission), 2012. Practical Implementation Guidelines for SSHAC Level 3 and 4 Hazard Studies, Prepared by AM Kammerer & JP Ake, NRC Project Manager: R Rivera-Lugo, NUREG-2117. Storchak, D.A., D. Di Giacomo, E.R. Engdahl, J. Harris, I. Bondár, W.H.K. Lee, P. Bormann and A. Villaseñor (2015). The ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009): Introduction, Phys. Earth Planet. Int., 239, 48-63, doi:10.1016/j.pepi.2014.06.009. Storchak, D.A., D. Di Giacomo, I. Bondár, E. R. Engdahl, J. Harris, W.H.K. Lee, A. Villaseñor and P. Bormann, 2013. Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009). Seism. Res. Lett., 84, 5, 810-815, doi:10.1785/0220130034. Strasser, F.O., Arango, M.C., Bommer, J.J., 2010. Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismological Research Letters 81, 941-950, doi:10.1785/gssrl.81.6.941. Stucchi, M., A. Rovida, A.A. Gomez Capera, P. Alexandre, T. Camelbeeck, M.B. Demircioglu, P. Gasperini , V. Kouskouna, R.M.W. Musson, M. Radulian, K. Sesetyan, S. Vilanova, D. Baumont, H. Bungum, D. Faeh, W. Lenhardt, K. Makropoulos, J.M. Martinez Solares, O. Scotti, M. Zivcic, P. Albini, J. Batllo, C. Papaioannou, R. Tatevossian, M. Locati, C. Meletti, D. Viganò and D. Giardini (2012). The SHARE European Earthquake Catalogue (SHEEC) 1000-1899. Journal of Seismology, doi 10.1007/s10950-012-9335-2. Tanioka Y., & Satake K. (1996). Fault Parameters of the 1896 Sanriku Tsunami Earthquake Estimated from Tsunami Numerical Modeling. Geophysical Research Letters 23, pp. 1549-1552. https://doi.org/10.1029/96GL01479. Tonini, R., Maesano, F. E., Tiberti, M. M., Romano, F., Scala, A., Lorito, S., Volpe, M., Basili, R. (2017). How much does geometry of seismic sources matter in tsunami modeling? A sensitivity analysis for the Calabrian subduction interface. Abstract NH23A-1948 presented at 2017 Fall Meeting, AGU, New Orleans, Louis., 11-15 Dec. USNRC (U.S. Nuclear Regulatory Commission), 1997. Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts, prepared by the SSHAC (Senior Seismic Hazard Analysis Committe - RJ Budnitz (Chairman), G Apostolakis, DM Boore, LS Cluff, KJ Coppersmith, CA Cornell, PA. Morris), NUREG/CR-6372. USNRC (U.S. Nuclear Regulatory Commission), 2012. Practical Implementation Guidelines for SSHAC Level 3 and 4 Hazard Studies, Prepared by AM Kammerer & JP Ake, NRC Project Manager: R Rivera-Lugo, NUREG-2117. USNRC (U.S. Nuclear Regulatory Commission), 2018. Updated Implementation Guidelines for SSHAC Hazard Studies, Prepared by JP Ake, C. Munson, J. Stamatakos, M. Juckett, K. Coppersmith, J. Bommer, NUREG-2117. Vernant P., Reilinger R., McClusky S. (2014). Geodetic evidence for low coupling on the Hellenic subduction plate interface, Earth and Planetary Science Letters, 385, 122-129, https://doi.org/10.1016/j.epsl.2013.10.018. Volpe, M., Lorito, S., Selva, J., Tonini, R., Romano, F., and Brizuela, B.: From regional to local SPTHA: efficient computation of probabilistic tsunami inundation maps addressing near-field sources, Nat. Hazards Earth Syst. Sci., 19, 455-469, https://doi.org/10.5194/nhess-19-455-2019, 2019. Wang, X.; Power, W.L. 2011. COMCOT: A Tsunami Generation Propagation and Run-up Model. GNS Science Report 2011/43. Weichert DH. (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bulletin of the Seismological Society of America; 70:1337–1356. Wells, D.L., Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 84, 974-1002, doi. Wessel, P., Smith,W.H.F., Scharroo, R., Luis, J.F. &Wobbe, F. (2013).Generic mapping tools: improved version released, EOSTrans. Am. Geophys. Un., 94, 409–410. Wiemer, S. (2001). A software package to analyse seismicity: ZMAP. Seismol. Res. Lett., 72, 3, 373-382. Woessner J., Danciu L., Giardini D., Crowley H., Cotton F., Grünthal G., Valensise G., Arvidsson R., Basili R., Demircioglu M., Hiemer S., Meletti C., Musson R.W., Rovida A., Sesetyan K., Stucchi M., and the SHARE consortium. (2015). The 2013 European Seismic Hazard Model - Key Components and Results. Bulletin of Earthquake Engineering, 13, 3553-3596, doi:10.1007/s10518-015-9795-1. Woessner J., S. Wiemer (2005). Assessing the Quality of Earthquake Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty. Bulletin of the Seismological Society of America, 95(2), 684-698, doi:10.1785/0120040007. Zechar, D., Gerstenberger, David, M.C., Rhoades, A. (2010), Likelihood-Based Tests for Evaluating Space–Rate–Magnitude Earthquake Forecasts. Bulletin of the Seismological Society of America; 100 (3): 1184–1195. doi: https://doi.org/10.1785/0120090192. Zheng, Y. H., Anderson, J. G. & Yu, G. A (1994) Composite Source Model for Computing Realistic Synthetic Strong Ground Motions. Geophys. Res. Lett 21, 725–728, doi:10.1029/94GL00367. Zheng, Y. H., Anderson, J. G. & Yu, G. A Composite Source Model for Computing Realistic Synthetic Strong Ground Motions. Geophys. Res. Lett 21, 725–728, doi:10.1029/94GL00367 (1994). Zio E. (1996), On the use of the analytic hierarchy process in the aggregation of expert judgments, Reliability Engineering & System Safety, Volume 53 (2), 127-138, ISSN 0951-8320. Zitellini N, Gracia E, Matias L, Terrinha P, Abreu M, DeAlteriis G, Hen- riet J, Danobeitia J, Masson D, Mulder T, Ramella R, Somoza L, Diez S (2009) The quest for the Africa-Eurasia plate boundary west of the Strait of Gibraltar. Earth and Planetary Science Letters 280(1):13 50, doi: https://doi.org/10.1016/j.epsl.2008.12.005.
http://hdl.handle.net/2122/12738
http://doi.org/10.5281/zenodo.3406625
http://www.tsumaps-neam.eu/documentation/
op_rights open
op_doi https://doi.org/10.5281/zenodo.3406625
https://doi.org/10.1111/j.1365-246X.2006.02912.x
_version_ 1766138771247464448
spelling ftingv:oai:www.earth-prints.org:2122/12738 2023-05-15T17:38:21+02:00 NEAMTHM18 Documentation: the making of the TSUMAPS-NEAM Tsunami Hazard Model 2018 Basili, Roberto Brizuela, Beatriz Herrero, André Iqbal, Sarfraz Lorito, Stefano Maesano, Francesco Emanuele Murphy, Shane Perfetti, Paolo Romano, Fabrizio Scala, Antonio Selva, Jacopo Taroni, Matteo Tiberti, Mara Monica Thio, Hong-Kie Tonini, Roberto Volpe, Manuela Glimsdal, Sylfest Harbitz, Carl Bonnevie Løvholt, Finn Baptista, Maria Fernando, Carrilho Matias, Luis Omira, Rachid Babeyko, Andrey Hoechner, Andreas Gurbuz, Mucahit Pekcan, Onur Yalciner, Ahmet Canals, Miquel Lastras, Galderic Agalos, Apostolos Papadopoulos, Gerassimos Triantafyllou, Ioanna Benchekroun, Sabah Agrebi Jaouadi, Hedi Attafi, Kheireddine Ben Abdallah, Samir Bouallegue, Atef Hamdi, Hassene Oueslati, Foued Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Bologna, Bologna, Italia AECOM Technical Services, USA Norwegian Geotechnical Institute (NGI), Norway Instituto Português do Mar e da Atmosfera (IPMA), Portugal Instituto Dom Luiz, Faculdade de Ciências da Universidade de Lisboa, Portugal Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum (GFZ), Germany Middle East Technical University (METU), Turkey GRC Geociències Marines, Departament de Dinàmica de la Terra I de l’Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Spain National Observatory of Athens (NOA), Greece Centre National pour la Recherche Scientifique et Technique (CNRST), Morocco National Institute of Meteorology (INM), Tunisia 2019-09-12 http://hdl.handle.net/2122/12738 https://doi.org/10.5281/zenodo.3406625 http://www.tsumaps-neam.eu/documentation/ en eng Alasset, P., Hébert, H., Maouche, S., Calbini, V. and Meghraoui, M. (2006), The tsunami induced by the 2003 Zemmouri earthquake (MW= 6.9, Algeria): modelling and results. Geophysical Journal International, 166: 213-226. doi:10.1111/j.1365-246X.2006.02912.x. Ambraseys, N.N. (1962) Data for the investigation of the seismic sea-waves in the Eastern Mediterranean. Bulletin of the Seismological Society of America; 52 (4): 895–913. Aspinall, W.P., Cooke, R.M., 2013. Quantifying scientific uncertainty from expert judgement elicitation, in “Risk and Uncertainty Assessment for Natural Hazards” (Eds J. Rougier, L. Hill, R.S.J. Sparks), Cambridge University Press, Cambridge, UK, ISBN 978-1-107-00619-5. Bakırcı T., Yoshizawa K., Özer M. F. (2012). Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography, Geophysical Journal International, 190(2), 1058–1076, https://doi.org/10.1111/j.1365-246X.2012.05526.x. Barbosa, S. M., Fernandes, M. J., Silva, M. E. (2004). Nonlinear sea level trends from European tide gauge records. Annales Geophysicae, 22, 1465–1472. Basili R, Volpe M, Maesano FE, Tiberti MM, Lorito S, Romano F, Tonini R (2017). Influence of seismogenic source geometrical accuracy on PTHA: a test case for the Calabrian subduction interface, Geophysical Research Abstracts, Vol. 19, EGU2017-18872-1, EGU General Assembly 2017. Basili R., Kastelic V., Demircioglu M. B., Garcia Moreno D., Nemser E. S., Petricca P., Sboras S. P., Besana-Ostman G. M., Cabral J., Camelbeeck T., Caputo R., Danciu L., Domac H., Fonseca J., García-Mayordomo J., Giardini D., Glavatovic B., Gulen L., Ince Y., Pavlides S., Sesetyan K., Tarabusi G., Tiberti M. M., Utkucu M., Valensise G., Vanneste K., Vilanova S., Wössner J. (2013). The European Database of Seismogenic Faults (EDSF) compiled in the framework of the Project SHARE. http://diss.rm.ingv.it/share-edsf/, doi:10.6092/INGV.IT-SHARE-EDSF. Basili, R., and M. M. Tiberti (2016). New statistics of earthquake-fault dip angles. Paper ESC2016-447, presented at the 35th General Assembly of the European Seismological Commission, Trieste, 4-10 September 2016. Basili, R., M. M. Tiberti, V. Kastelic, F. Romano, A. Piatanesi, J. Selva, S. Lorito (2013). Integrating geologic fault data into tsunami hazard studies, Nat. Hazards Earth Syst. Sci., 13(4), 1025-1050, doi:10.5194/nhess-13-1025-2013. Bazzurro P, Cornell C (1999). Disaggregation of seismic hazard, Bull. Seismol. Soc. Am., 89(2), 501–520. Berryman K., Wallace L., Hayes G., Bird P., Wang K., Basili R., Lay T., Pagani M., Stein R., Sagiya T., Rubin C., Barreintos S., Kreemer C., Litchfield N., Stirling M., Gledhill K., Haller K., Costa C. (2015). The GEM Faulted Earth Subduction Interface Characterisation Project, Version 2.0, April 2015, GEM Faulted Earth Project, available from http://www.nexus.globalquakemodel.org/gem-faulted-earth/posts. Bilek S. L. & Lay T. (1999). Rigidity variations with depth along interpolate megathrust faults in subduction zones. Nature, 400, 443-446. https://doi.org/10.1038/22739. Bird, P. (2003) An updated digital model of plate boundaries, Geochem Geophys Geosys 4(3), 1027, doi:10.1029/2001GC000252. Blaser, L., Krüger, F., Ohrnberger, M., Scherbaum, F., 2010. Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America 100, 2914-2926, doi:10.1785/0120100111. Bommer JJ (2012). Challenges of Building Logic Trees for Probabilistic Seismic Hazard Analysis, EARTHQUAKE SPECTRA, Vol: 28, 1723-1735, ISSN: 8755-2930. Bommer, J.J., Scherbaum, F. (2008). The use and misuse of logic trees in Probabilistic Seismic Hazard Analysis, Earthq. Spectra, 24(4), 997–1009. Boyd, O. S. (2012). Including foreshocks and aftershocks in time-independent probabilistic seismic-hazard analyses, Bull. Seismol.Soc. Am. 102, 909–917. Burridge, R., (1973). Admissible Speeds for Plane-Strain Self-Similar Shear Cracks With Friction but Lacking Cohesion, Geophysical Journal International Vol. 35(4): 439–455. doi:10.1111/j.1365-246X.1973.tb00608.x. Campbell KW (1982), Bayesian analysis of extreme earthquake occurrences. Part I. Probabilistic hazard model, Bulletin of the Seismological Society of America, Vol. 72, No. 5, pp. 1689-1705, October 1982 Carafa, M.M.C., Kastelic, V., Bird, P., Maesano, F.E. & Valensise, G., 2018. A “geodetic” gap in the Calabrian Arc: evidence for a locked subduction megathrust? Geophys. Res. Lett., 45(4), 1794–1804. Casarotti, E., M. Stupazzini, S. J. Lee, D. Komatitsch, A. Piersanti, and J. Tromp (2008), CUBIT and Seismic Wave Propagation Based Upon the Spectral-element Method: An Advanced unstructured Mesher for Complex 3D Geological Media, in Proceedings of the 16th International Meshing Roundtable, M. L. Brewer and D. Marcum (Editors), Springer, New York. (session 5B) pp. 579--597, doi:10.1007/978-3-540-75103-8_32. Choi, B.H., Pelinovsky, E., Ryabov, I., Hong, S.J. (2002). Distribution Functions of Tsunami Wave Heights. Natural Hazards, 25(1), doi:10.1023/A:1013379705323. Christophersen, A., Berryman, K., Litchfield, N. (2015) The GEM Faulted Earth Project, Version 1.0, April 2015, GEM Faulted Earth Project, doi:10.13117/GEM.GEGD.TR2015.02. Collettini, C. & Sibson, R.H. (2001). Normal faults, normal friction?, Geology, 29, 927-930. Cooke, R. M. (1991). Experts in Uncertainty: Opinion and Subjective Probability in Science,” Oxford University Press, Oxford. Cooke, R.M. and Goossens, L.H.J. (2000), “A Procedures Guide for Structured Expert Judgment,” EUR 18820, European Commission Report. Cornell C (1968): Engineering seismic risk analysis, Bull. Seismol. Soc. Am. 58:1583–1606. Davies G, Griffin J, Løvholt F, Glymsdal S, Harbitz C, Thio HK, Lorito S, Basili R, Selva J, Geist E, Baptista MA (2018). A global probabilistic tsunami hazard assessment from earthquake sources. From: Scourse, E. M., Chapman, N. A., Tappin, D. R. & Wallis, S. R. (eds) Tsunamis: Geology, Hazards and Risks. Geological Society, London, Special Publications, 456, https://doi.org/10.1144/SP456.5. DCDPC (Decreto del Capo Dipartimento della Protezione Civile) 2018, Indicazioni alla Componenti ed alle Strutture operative del Servizio nazionale di protezione civile per l’aggiornamento delle pianificazioni di protezione civile per il rischio maremoto, Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile, Reportorio n 3976 del 10/10/2018 De la Asunción, M., Castro, M. J., Fernández-Nieto, E. D., Man- tas, J. M., Ortega Acosta, S.,González Vida, J. M. (2013) Efficient GPU implementation of a two waves TVD-WAF method for the two-dimensional one layer shallow water system on structured meshes, Comput. Fluids, 80, 441–452 Delavaud E., Cotton F., Akkar S., Scherbaum F., Danciu L., Beauval C., Drouet S., Douglas J., Basili R., Sandikkaya M., Segou M., Faccioli E., Theodoulidis N. (2012). Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe. Journal of Seismology, 16(3), 451-473, doi:10.1007/s10950-012-9281-z. Di Giacomo, D., E.R. Engdahl and D.A. Storchak (2018). The ISC-GEM Earthquake Catalogue (1904–2014): status after the Extension Project, Earth Syst. Sci. Data, 10, 1877-1899, doi:10.5194/essd-10-1877-2018. DISS Working Group (2018). Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, Istituto Nazionale di Geofisica e Vulcanologia; DOI:10.6092/INGV.IT-DISS3.2.1. Duarte, J.C., Rosas, F.M., Terrinha, P., Schellart, W.P., Boutelier, D., Gutscher, M-A., Ribeiro A. (2013). Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin. Geology, 41 (8): 839–842. doi: https://doi.org/10.1130/G34100.1. Dziewonski, A.M. & Anderson, D.L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25 (4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7. Dziewonski, A.M., T.A. Chou, and J.H. Woodhouse (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, Journal of Geophysical Research, 86(B4), 2825, doi:10.1029/JB086iB04p02825. Egbert, G.D., and S.Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 19(2), 183-204. Ekström, G., M. Nettles, and A.M. Dziewoński (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Physics of the Earth and Planetary Interiors, 200-201, 1-9, doi:10.1016/j.pepi.2012.04.002. Eshelby, J. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. Roy. Soc. London, Series A 241, 376–396. doi:10.1098/rspa.1957.0133 (1957). Field Edward H., Ramon J. Arrowsmith, Glenn P. Biasi, Peter Bird, Timothy E. Dawson, Karen R. Felzer, David D. Jackson, Kaj M. Johnson, Thomas H. Jordan, Christopher Madden, Andrew J. Michael, Kevin R. Milner, Morgan T. Page, Tom Parsons, Peter M. Powers, Bruce E. Shaw, Wayne R. Thatcher, Ray J. Weldon, Yuehua Zeng (2014) Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)—The Time‐Independent Model. Bulletin of the Seismological Society of America; 104 (3): 1122–1180. doi:10.1785/0120130164. Field, E. H., Jordan, T. H., Page, M. T., Milner, K. R., Shaw, B. E., Dawson, T. E., Biasi, G. P., Parsons, T., Hardebeck, J. L., & Michael, A. J. ( 2017). A synoptic view of the third uniform California earthquake rupture forecast (UCERF3). Seismological Research Letters, 88, 5, 1259– 1267, doi:10.1785/0220170045. Forman, E. & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108(1), 165-169. Frankel, A. (1995). Mapping seismic hazard in the central and eastern United States. Seismological Research Letters, 66(4), 8-21. Fraser SA, Power WL (2013). Validation of a GIS-based attenuation rule for indicative tsunami evacuation zone mapping. GNS Science Report 2013/02. Lower Hutt. 21 p. Gailler A, Hébert H, Schindelé F, Reymond D (2018) Coastal amplification laws for the french tsunami warning center: Numerical modeling and fast estimate of tsunami wave heights along the French riviera. Pure and Applied Geophysics 175(4):1429–1444, DOI 10.1007/s00024-017-1713-9, URL https: //doi.org/10.1007/s00024-017-1713-9 Ganas, A., and Parsons, T. (2009). Three‐dimensional model of Hellenic Arc deformation and origin of the Cretan uplift. Journal of Geophysical Research: Solid Earth, 114(B6), 10.1029/2008JB005599. Gardner, J. K., and L. Knopoff (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America; 64 (5): 1363–1367. Geist E. L. & Bilek S. L. (2001). Effect of depth-dependent shear modulus on tsunami generation along subduction zones. Geophysical Research Letters, 28 (7), 1315-1318. https://doi.org/10.1029/2000GL012385. Geist EL, Lynett P J (2014) Source processes for the probabilistic assessment of tsunami hazards, Oceanography, 27, 86–93. Geist, E. L. and Parsons, T. (2006). Probabilistic Analysis of Tsunami Hazards, Nat. Hazards, 37, 277–314, doi:10.1007/s11069-005-4646z. Geist, E.L., and Parsons, T., 2016, Reconstruction of far-field tsunami amplitude distributions from earthquake sources: Pure and Applied Geophysics, v. 173, p. 3703-3717, doi:10.1007/s00024-00016-01288-x. GEM (2018). The OpenQuake-engine User Manual. Global Earthquake Model (GEM) OpenQuake Manual for Engine version 3.2.0. doi:10.13117/GEM.OPENQUAKE.MAN.ENGINE.3.2.0, 189 pages. Giardini D., J. Woessner, L. Danciu, H. Crowley, F. Cotton, G. Gruenthal, R. Pinho, G. Valensise, S. Akkar, R. Arvidsson, R. Basili, T. Cameelbeck, A. Campos-Costa, J. Douglas, M.B. Demircioglu, M. Erdik, J. Fonseca, B. Glavatovic, C. Lindholm, K. Makropoulos, F. Meletti, R. Musson, K. Pitilakis, K. Sesetyan, D. Stromeyer, M. Stucchi, A. Rovida (2013). Seismic Hazard Harmonization in Europe (SHARE): Online Data Resource, doi:10.12686/SED-00000001-SHARE. Glimsdal, S., Løvholt, F., Harbitz, C.B., Romano, F., Lorito, S., Orefice, S., Brizuela, B., Selva, J., Hoechner, A., Volpe, M., Babeyko, A., Tonini, R., Wronna, M., Omira, R. (2019). A New Approximate Method for Quantifying Tsunami Maximum Inundation Height Probability. Pure Appl. Geophys, https://doi.org/10.1007/s00024-019-02091-w. Goepel, K.D. (2013), IMPLEMENTING THE ANALYTIC HIERARCHY PROCESS AS A STANDARD METHOD FOR MULTI-CRITERIA DECISION MAKING IN CORPORATE ENTERPRISES – A NEW AHP EXCEL TEMPLATE WITH MULTIPLE INPUTS, Proceedings of the International Symposium on the Analytic Hierarchy Process 2013. González, F. I., E. L. Geist B. Jaffe U. Kânoğlu H. Mofjeld C. E. Synolakis V. V. Titov D. Arcas D. Bellomo D. Carlton T. Horning J. Johnson J. Newman T. Parsons R. Peters C. Peterson G. Priest A. Venturato J. Weber F. Wong A. Yalciner (2009), Probabilistic tsunami hazard assessment at Seaside, Oregon, for near‐ and far‐field seismic sources, J. Geophys. Res., 114, C11023, doi:10.1029/2008JC005132. Grezio A, Babeyko A, Baptista MA, Behrens J, Costa A, Davies G, Geist EL, Glimsdal S, González FI, Griffin J, Harbitz CB, LeVeque RJ, Lorito S, Løvholt F, Omira R, Mueller C, Paris R, Parsons T, Polet J, Power W, Selva J, Sørensen M, Thio HK (2017). Probabilistic Tsunami Hazard Analysis: Multiple sources and global applications. Reviews of Geophysics, 55. https://doi.org/10.1002/2017RG000579. Grezio, A., Babeyko A., Baptista M.A., Behrens, J., Costa, A., Davies, G., Geist, E.L., Glimsdal, S., González, F. I., Griffin, J., Harbitz, C.B., Le Veque, R.J., Lorito, S., Løvholt, F., Omira, R., Mueller, C., Paris, R., Parsons, T., Polet, J., Power, W., Selva, J.,Sørensen, M.B., Thio, H.K. (2017). Probabilistic Tsunami Hazard Analysis: Multiple sources and global applications. Reviews of Geophysics, 55, 1158–1198. https://doi.org/10.1002/2017RG000579 Grünthal G. and R. Wahlström (2012). The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. Journal of Seismology, 16, 535-570, doi 10.1007/s10950-012-9302-y. Gutscher, M.A., Malod, J., Rehault, J.P., Contrucci, I., Klingelhoefer, F., Mendes-Victor, L., and Spakman, W. (2002). Evidence for active subduction beneath Gibraltar. Geology, v. 30, p. 1071–1074. Harker, P. & Vargas L. (1987), The Theory of Ratio Scale Estimation: Saaty's Analytic Hierarchy Process. Management Science. 33(11), 1383–1403. Hayes G.P., G.L. Moore, D.E. Portner, M. Hearne, H. Flamme, M. Furtney, G.M. Smoczyk (2018). Slab2, a comprehensive subduction zone geometry model. Science, 10.1126/science.aat4723. Hayes, G. (2018). Slab2 - A Comprehensive Subduction Zone Geometry Model: U.S. Geological Survey data release, https://doi.org/10.5066/F7PV6JNV. Hayes, G. P., Wald, D. J. & Johnson, R. L. (2012) Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research: Solid Earth 117, n/a-n/a, doi:10.1029/2011jb008524. Heinrich P., Schindele F., & Guibourg S. (1998). Modeling of the February 1996 Peruvian tsunami. Geophysical Reasearch Letters, 25, 2687-2690. https://doi.org/10.1029/98GL01780. Herrero A, Murphy S, Lorito S, Romano F, Volpe M (2017). The influence of complex fault geometry and slip of large subduction earthquakes on tsunami generation, Geophysical Research Abstracts Vol. 19, EGU2017-14724-1, EGU General Assembly 2017. Herrero A, Murphy S, Lorito S, Romano F, Volpe M (2017). The influence of complex fault geometry and slip of large subduction earthquakes on tsunami generation, Geophysical Research Abstracts Vol. 19, EGU2017-14724-1, EGU General Assembly 2017. Herrero A., Murphy S., Complex slip distributions on complex fault geometries. SSA meeting, Denver 17-21 april. (2017). Herrero A., S Murphy (2018). Self-similar slip distributions on irregular shaped faults, Geophysical Journal International, 213(3), 2060–2070, https://doi.org/10.1093/gji/ggy104 Herrero, A. & Bernard, P. A Kinematic Self-Similar Rupture Process for Earthquakes. Bull. Seismol. Soc. Am. 84(No. 4), 1216–1228 (1994). Hiemer, S., J. Woessner, R. Basili, L. Danciu, D. Giardini, and S. Wiemer (2014), A smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europe, Geophys. J. Int., 198, 1159-1172, doi:10.1093/gji/ggu186. Howell A., Jackson J., Copley A., McKenzie D., Nissen E. (2017). Subduction and vertical coastal motions in the eastern Mediterranean, Geophysical Journal International, 211(1), 593–620, https://doi.org/10.1093/gji/ggx307. Ichinose, G.A., 2006. Moment Tensor and Rupture Model for the 1949 Olympia, Washington, Earthquake and Scaling Relations for Cascadia and Global Intraslab Earthquakes. Bulletin of the Seismological Society of America 96, 1029-1037, doi:10.1785/0120050132. Iervolino, I., M. Giorgio, and B. Polidoro (2012). Probabilistic seismic haz-ard analysis for seismic sequences, in Vienna Congress on RecentAdvances in Earthquake Engineering and Structural Dynamics2013, C. Adam, R. Heuer, W. Lenhardt, and C. Schranz (Editors),28–30 August 2013, Vienna, Austria, Paper No. 66 ISC - International Seismological Centre (2016), On-line Bulletin, http://www.isc.ac.uk, Internatl. Seismol. Cent., Thatcham, United Kingdom. Kagan, Y. Y. (2002a). Seismic moment distribution revisited: I. Statistical results, Geophys. J. Int., 148, 520–541, doi:10.1046/j.1365-246x.2002.01594.x. Kagan, Y. Y. (2002b). Seismic moment distribution revisited: II. Moment conservation principle, Geophys. J. Int., 149, 731–754, doi:10.1046/j.1365-246X.2002.01671.x. Kagan, Y.Y., Bird, P., Jackson, D.D. (2010) Earthquake Patterns in Diverse Tectonic Zones of the Globe, Pure Appl. Geophys., 167(6), 721-741, doi:10.1007/s00024-010-0075-3. Kajiura, K. (1963). The leading wave of a tsunami, Bull. Earthquake Res. Inst. Univ., Tokyo, 41, 535–571. Kamigaichi O., “Tsunami Forecasting and Warning,” Encyclopedia of Complexity and System Science, Springer., pp. 9592-9618, 2009. https://doi.org/10.1007/978-1-4419-7695-6 Keller M., Pasanisi A., Marcilhac M., Yalamas T., Secanell R., and Senfaute G. (2014), A Bayesian Methodology Applied to the Estimation of Earthquake Recurrence Parameters for Seismic Hazard Assessment, Qual. Reliab. Engng. Int., 30, 921–933, doi:10.1002/qre.1735 Kriebel D. L., Lynett P. J., Cox D. T., Petroff C. M., Robertson I. N. and Chock G. Y. K.; 2017: Energy method for approximating energy overland tsunami flows. J. Waterway, Port, Coastal, Ocean Eng., 143(5), http://dx.doi.org/10.1061/(ASCE)WW.1943-5460.0000393. Laigle, M., Sachpazi, M., & Hirn, A. (2004). Variation of seismic coupling with slab detachment and upper plate structure along the western Hellenic subduction zone. Tectonophysics, 391(1-4), 85-95, 10.1016/j.tecto.2004.07.009. Laske, G., G. Masters., Z. Ma, and M. Pasyanos (2013), Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust, Geophys. Res. Abstracts, 15, Abstract EGU2013-2658. Lay, T., Kanamori, H., Ammon, C.J., Koper, K.D., Hutko, A.R., Ye, L., Yue, H., Rushing, T.M., 2012. Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. 117, B04311. http://dx.doi.org/10.1029/2011JB009133. Leonard, M., 2010. Earthquake Fault Scaling: Self-Consistent Relating of Rupture Length, Width, Average Displacement, and Moment Release. Bulletin of the Seismological Society of America 100, 1971-1988, http://dx.doi.org/10.1785/0120090189. Leonard, M., 2014. Self-Consistent Earthquake Fault-Scaling Relations: Update and Extension to Stable Continental Strike-Slip Faults. Bulletin of the Seismological Society of America, doi:10.1785/0120140087. Lorito, S., Selva J., Basili R., Romano, F., Tiberti, M. M., and Piatanesi, A (2015). Probabilistic Hazard for Seismically-Induced Tsunamis: Accuracy and Feasibility of Inundation Maps, Geophys. J. Int., 200, 574–588, https://doi.org/10.1093/gji/ggu408 Løvholt F, Glimsdal S, Harbitz CB, Nadim F, Zamora N, Peduzzi P, Dao HI, Smebye H (2012). Tsunami hazard and exposure on the global scale, Earth-Science Reviews, Volume 110, Issues 1–4, Pages 5873, ISSN 0012-8252, 10.1016/j.earscirev.2011.10.002. Løvholt F, Griffin J, Salgado-Galvez M (2015). Tsunami Hazard and Risk Assessment on the Global Scale, R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, Springer, DOI 10.1007/978-3-642-27737-5_642-1. Løvholt, F., Griffin, J., & Salgado-Gálvez, M. (2015). Tsunami Hazard and Risk Assessment on the Global Scale (pp. 1–34). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/ 10.1007/978-3-642-27737-5_642-1. Macías, J., Castro, M. J., Ortega, S., Escalante, C., & González-Vida, J. M. (2017). Performance benchmarking of tsunami-HySEA model for NTHMP’s inundation mapping activities. Pure and Applied Geophysics. doi:10.1007/s00024-017-1583-1. Macías, J., Mercado, A., González-Vida, J. M., Ortega, S., & Castro, M. J. (2016). Comparison and computational performance of Tsunami-HySEA and MOST models for LANTEX 2013 scenario: Impact assessment on Puerto Rico coasts. Pure and Applied Geophysics, 173(12), 3973–3997. doi:10.1007/s00024-016-1387-8. Maesano, F. E., Tiberti, M. M., and Basili, R., 2017, The Calabrian Arc: three-dimensional modelling of the subduction interface: Sci Rep, v. 7, no. 1, doi:10.1038/s41598-017-09074-8. Mai P. M. & Thingbaijam K. K. S. (2014). SRCMOD: An online database of finte fault-fault rupture models. Seismological Research Letters, 85(6), 1348-1357. https://doi.org/10.1785/0220140077. Maramai A., Brizuela B., Graziani L. (2014) The Euro-Mediterranean Tsunami Catalogue, Annals of Geophysics, 57, 4, S0435; doi:10.4401/ag-6437. Marzocchi, W., Taroni, M., Selva, J., 2015. Accounting for epistemic uncertainty in PSHA: logic tree and ensemble modeling. Bulletin of the Seismological Society of America, 105(4), 2151-2159. MCDEM (2016) - Tsunami Evacuation Zones- Director’s Guideline for Civil Defence Emergency Management Groups [DGL 08/16] February 2016 . ISBN 978-0-478-43515-3. Published by the Ministry of Civil Defence & Emergency Management – New Zealand Meade, B. J. (2007), Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space, Comput. Geosci., 33, 1064–1075, doi:10.1016/j.cageo.2006.12.00. Meade, B. J. (2007), Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space, Comput. Geosci., 33, 1064–1075, doi:10.1016/j.cageo.2006.12.00. Miranda, J. M., Luis, J. F., Reis, C., Omira, R., and Baptista, M. A.: Validation of NSWING, a multi-core finite difference code for tsunami propagation and run-up, Paper Number S21A-4390, Session Number and Title S21A, Natural Hazards, American Geophysical Union (AGU) Fall Meeting, San Francisco, 2014. Molinari I, Tonini R, Lorito S, Piatanesi A, Romano F, Melini D, Hoechner A, Gonzàlez Vida JM, Maciás J, Castro MJ, de la Asunción M (2016). Fast evaluation of tsunami scenarios: uncertainty assessment for a Mediterranean Sea database, Nat. Hazards Earth Syst. Sci., 16, 2593-2602, doi:10.5194/nhess16-2593-2016. Morgan, M.G. (2014). Use (and abuse) of expert elicitation in support of decision making for public policy, Proc. Nat. Acad. Sci. 111(20); 7176-7184, DOI:10.1073/pnas.1319946111 Murotani, S., Miyake, H., Koketsu, K., 2008. Scaling of characterized slip models for plate-boundary earthquakes. Earth Planets Space 60, 987-991. Murotani, S., Satake, K., Fujii, Y., 2013. Scaling relations of seismic moment, rupture area, average slip, and asperity size forM~9 subduction-zone earthquakes. Geophysical Research Letters 40, 5070-5074, doi:10.1002/grl.50976. Murphy, S., Scala, A., Herrero, A., Lorito, S., Festa, G., Trasatti, E., Tonini, R., Romano, F., Molinari, I., Nielsen, S., (2016) Shallow slip amplification and enhanced tsunami hazard unravelled by dynamic simulations of mega-thrust earthquakes. Sci. Rep. 6, 35007; doi:10.1038/srep35007. Musson, R. M. W. (2012). On the nature of logic trees in probabilistic seismic hazard assessment, Earthq. Spectra 28, 1291–1296. Nijholt N., Govers R., Wortel R. (2018). On the forces that drive and resist deformation of the south-central Mediterranean: a mechanical model study, Geophysical Journal International, 214(2), 876–894, https://doi.org/10.1093/gji/ggy144. Nosov, M.A. & Kolesov, S.V. (2011). Optimal Initial Conditions for Simulation of Seismotectonic Tsunamis, Pure Appl. Geophys. 168: 1223. doi:10.1007/s00024-010-0226-6. Novotni, M. & Klein, R. Computing geodesic distances on triangular meshes. The 10-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2002 (WSCG 2002). Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 82, 1018–1040. Pacheco, J. F., and L. R. Sykes (1992), Seismic moment catalog of large shallow earthquakes, 1900 to 1989, Bull. Seismol. Soc. Am., 82, 1306 – 1349. Papadopoulos G. A., E. Gràcia, R. Urgeles, V. Sallares, P.M. De Martini, D. Pantosti, M. González, A. C. Yalciner, J. Mascle, D. Sakellariou, A. Salamon, S. Tinti, V. Karastathis, A. Fokaefs, A. Camerlenghi, T. Novikova and A. Papageorgiou, 2014. Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Marine Geology, 2014, DOI:10.1016/ j.margeo.2014.04.014. Piatanesi, A. and Tinti, S. (2002), Numerical modeling of the September 8, 1905 Calabrian (southern Italy) tsunami. Geophys. Journ. Intern., Vol. 150, No. 1, pp. 271-284. Pondrelli S. and Salimbeni S. (2015). Regional Moment Tensor Review: An Example from the European Mediterranean Region. In Encyclopedia of Earthquake Engineering (pp. 1-15), http://link.springer.com/referenceworkentry/10.1007/978-3-642-36197-5_301-1, Springer Berlin Heidelberg. Power, W., Wang, X., Lane, E., Gillibrand, P. (2013). A Probabilistic Tsunami Hazard Study of the Auckland Region, Part I: Propagation Modelling and Tsunami Hazard Assessment at the Shoreline. Pure Appl. Geophys. 170: 1621. https://doi.org/10.1007/s00024-012-0543-z Romanowicz, B., Ruff, L.J., 2002. On moment-length scaling of large strike slip earthquakes and the strength of faults. Geophysical Research Letters 29, 45-41-45-44, doi:10.1029/2001GL014479. Rougier, J., R. Sparks, and L. J. Hill (2013), Risk assessment and uncertainty in natural hazards, in Risk and Uncertainty Assessment for Natural Hazards, edited by J. C. Rougier, R. S. J. Sparks, and L. J. Hill, pp. 1–18, Cambridge Univ. Press, Cambridge, U. K. Ruiz, J. A., Baumont, D., Bernard, P. & Berge-Thierry, C. Modelling directivity of strong ground motion with a fractal, k− 2, kinematic source model. Geophys. J. Int. 186, 226–244, doi:10.1111/j.1365- 246X.2011.05000.x (2011). Saaty, T.L. (1980), The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation, ISBN 0-07-054371-2, McGraw-Hill. Saaty, T.L., Hu G. (1998), Ranking by Eigenvector Versus Other Methods in the Analytic Hierarchy Process, Appl. Math. Lett. Vol. 11, No. 4, pp. 121-125, 1998. Sachpazi, M., Laigle, M., Charalampakis, M., Diaz, J., Kissling, E., Gesret, A., Becel, A., Flueh, E., Miles, P., and Hirn, A. (2016). Segmented Hellenic slab rollback driving Aegean deformation and seismicity. Geophysical Research Letters, 43(2), 651-658, doi:10.1002/2015GL066818. Salaün G., Pedersen H.A., Paul A., Farra V., Karabulut H., Hatzfeld D., Papazachos C., Childs D.M., Pequegnat C., and SIMBAAD Team (2012). High-resolution surface wave tomography beneath the Aegean-Anatolia region: constraints on upper-mantle structure, Geophysical Journal International, 190(1), 406–420, https://doi.org/10.1111/j.1365-246X.2012.05483.x. Satake K. (1995). Linear and nonlinear computation of the 1992 Nicaragua earthquake tsunami, Pure and Applied Geophysics, 144, 455-470. https://doi.org/10.1007/BF00874378. Scala A, Lorito S, Romano F, Murphy S, Selva J, Basili R, Babeyko A, Herrero A, Hoechner A, Løvholt F, Maesano FE, Perfetti P, Tiberti MM, Tonini R, Volpe M, Davies G, Festa G, Power W, Piatanesi A (2019) Effect of shallow slip amplification uncertainty on probabilistic tsunami hazard analysis in subduction zones: use of long-term balanced stochastic slip models, submitted Sellier N.C., Loncke L., Vendeville B.C., Mascle J., Zitter T., Woodside J., Loubrieu B. (2013a). Post-Messinian evolution of the Florence Ridge area (Western Cyprus Arc), Part I: Morphostructural analysis,Tectonophysics, 591, https://doi.org/10.1016/j.tecto.2012.04.001. Sellier N.C., Vendeville B.C., Loncke L. (2013b). Post-Messinian evolution of the Florence Rise area (Western Cyprus Arc) Part II: Experimental modeling, Tectonophysics, 591, 143-151, https://doi.org/10.1016/j.tecto.2011.07.003. Selva J, Costa A, Marzocchi W, Sandri L (2010), BET_VH: exploring the influence of natural uncertainties on long-term hazard from tephra fallout at Campi Flegrei (Italy) , Bull. Volcanol. 72(6): 705-716. Selva J, Lorito S, Basili R, Tonini R, Tiberti MM, Romano F, Perfetti P, Volpe M (2017). On the use of faults and background seismicity in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA), Geophysical Research Abstracts Vol. 19, EGU2017-17395-1, EGU General Assembly 2017. Selva J, Marzocchi W (2004), Focal parameters, depth estimation and plane selection of the worldwide shallow seismicity with Ms >= 7.0 for the period 1900-1976. G-cubed, 5, Q05005, doi:10.1029/2003GC000669. Selva J, Sandri L (2013), Probabilistic Seismic Hazard Assessment: Combining Cornell-like approaches and data at sites through Bayesian inference , Bull. Seism. Soc. Am., 103(3):1709-1722, DOI:10.1785/0120120091 Selva J., S. Iqbal, F. Cotton, D. Giardini, S. Esposito, B. Stojadinovic, S. Argyroudis, K. Pitilakis, A. Mignan, and S. Lorito (in prep). Management of subjectivity in probabilistic single/multi-hazard/risk assessments: a Multiple-Expert Management Protocol (MEM-Pr). Selva J., Tonini R., Molinari I., Tiberti M.M., Romano F., Grezio A., Melini D., Piatanesi A., Basili R., Lorito S. (2016). Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA). Geophys. J. Int., 205, 1780-1803, doi:10.1093/gji/ggw107. Selva, J. et al. (2015). Report on the effects of epistemic uncertainties on the definition of LP-HC events. Deliverable 3.1 STREST Project. Selva, J., Marzocchi, W., Papale, P., & Sandri, L. (2012). Operational eruption forecasting at high-risk volcanoes: the case of Campi Flegrei, Naples. Journal of Applied Volcanology, 1(1), 1. Shaw B., Jackson J. (2010). Earthquake mechanisms and active tectonics of the Hellenic subduction zone, Geophysical Journal International, 181(2), 966–984, https://doi.org/10.1111/j.1365-246X.2010.04551.x. Sibson, R.H. & Xie, G. (1998). Dip Range for Intracontinental Reverse Fault Ruptures: Truth Not Stranger than Friction?, Bulletin of the Seismological Society of America, 88, 1014-1022. Skarlatoudis, A.A., Somerville, P.G., Thio, H.K., 2016. Source‐Scaling Relations of Interface Subduction Earthquakes for Strong Ground Motion and Tsunami Simulation. Bulletin of the Seismological Society of America 106, 1652-1662, doi:10.1785/0120150320. Sodoudi, F., Brüstle, A., Meier, T., Kind, R., Friederich, W., and Egelados Working Group. (2015). Receiver function images of the Hellenic subduction zone and comparison to microseismicity. Solid Earth, 6(1), 135-151, doi:10.5194/se-6-135-2015. Sørensen, M. B., Spada, M., Babeyko, A., Wiemer, S., and Grünthal, G. (2012). Probabilistic tsunami hazard in the Mediterranean Sea, J. Geophys. Res., 117, B01305, doi:10.1029/2010JB008169. SSHAC (Senior Seismic Hazard Analysis Committe), 1997. Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts, U.S. Nuclear Regulatory Commission Report NUREG/CR-6372. SSHAC 2012: USNRC (U.S. Nuclear Regulatory Commission), 2012. Practical Implementation Guidelines for SSHAC Level 3 and 4 Hazard Studies, Prepared by AM Kammerer & JP Ake, NRC Project Manager: R Rivera-Lugo, NUREG-2117. Storchak, D.A., D. Di Giacomo, E.R. Engdahl, J. Harris, I. Bondár, W.H.K. Lee, P. Bormann and A. Villaseñor (2015). The ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009): Introduction, Phys. Earth Planet. Int., 239, 48-63, doi:10.1016/j.pepi.2014.06.009. Storchak, D.A., D. Di Giacomo, I. Bondár, E. R. Engdahl, J. Harris, W.H.K. Lee, A. Villaseñor and P. Bormann, 2013. Public Release of the ISC-GEM Global Instrumental Earthquake Catalogue (1900-2009). Seism. Res. Lett., 84, 5, 810-815, doi:10.1785/0220130034. Strasser, F.O., Arango, M.C., Bommer, J.J., 2010. Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismological Research Letters 81, 941-950, doi:10.1785/gssrl.81.6.941. Stucchi, M., A. Rovida, A.A. Gomez Capera, P. Alexandre, T. Camelbeeck, M.B. Demircioglu, P. Gasperini , V. Kouskouna, R.M.W. Musson, M. Radulian, K. Sesetyan, S. Vilanova, D. Baumont, H. Bungum, D. Faeh, W. Lenhardt, K. Makropoulos, J.M. Martinez Solares, O. Scotti, M. Zivcic, P. Albini, J. Batllo, C. Papaioannou, R. Tatevossian, M. Locati, C. Meletti, D. Viganò and D. Giardini (2012). The SHARE European Earthquake Catalogue (SHEEC) 1000-1899. Journal of Seismology, doi 10.1007/s10950-012-9335-2. Tanioka Y., & Satake K. (1996). Fault Parameters of the 1896 Sanriku Tsunami Earthquake Estimated from Tsunami Numerical Modeling. Geophysical Research Letters 23, pp. 1549-1552. https://doi.org/10.1029/96GL01479. Tonini, R., Maesano, F. E., Tiberti, M. M., Romano, F., Scala, A., Lorito, S., Volpe, M., Basili, R. (2017). How much does geometry of seismic sources matter in tsunami modeling? A sensitivity analysis for the Calabrian subduction interface. Abstract NH23A-1948 presented at 2017 Fall Meeting, AGU, New Orleans, Louis., 11-15 Dec. USNRC (U.S. Nuclear Regulatory Commission), 1997. Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts, prepared by the SSHAC (Senior Seismic Hazard Analysis Committe - RJ Budnitz (Chairman), G Apostolakis, DM Boore, LS Cluff, KJ Coppersmith, CA Cornell, PA. Morris), NUREG/CR-6372. USNRC (U.S. Nuclear Regulatory Commission), 2012. Practical Implementation Guidelines for SSHAC Level 3 and 4 Hazard Studies, Prepared by AM Kammerer & JP Ake, NRC Project Manager: R Rivera-Lugo, NUREG-2117. USNRC (U.S. Nuclear Regulatory Commission), 2018. Updated Implementation Guidelines for SSHAC Hazard Studies, Prepared by JP Ake, C. Munson, J. Stamatakos, M. Juckett, K. Coppersmith, J. Bommer, NUREG-2117. Vernant P., Reilinger R., McClusky S. (2014). Geodetic evidence for low coupling on the Hellenic subduction plate interface, Earth and Planetary Science Letters, 385, 122-129, https://doi.org/10.1016/j.epsl.2013.10.018. Volpe, M., Lorito, S., Selva, J., Tonini, R., Romano, F., and Brizuela, B.: From regional to local SPTHA: efficient computation of probabilistic tsunami inundation maps addressing near-field sources, Nat. Hazards Earth Syst. Sci., 19, 455-469, https://doi.org/10.5194/nhess-19-455-2019, 2019. Wang, X.; Power, W.L. 2011. COMCOT: A Tsunami Generation Propagation and Run-up Model. GNS Science Report 2011/43. Weichert DH. (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bulletin of the Seismological Society of America; 70:1337–1356. Wells, D.L., Coppersmith, K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 84, 974-1002, doi. Wessel, P., Smith,W.H.F., Scharroo, R., Luis, J.F. &Wobbe, F. (2013).Generic mapping tools: improved version released, EOSTrans. Am. Geophys. Un., 94, 409–410. Wiemer, S. (2001). A software package to analyse seismicity: ZMAP. Seismol. Res. Lett., 72, 3, 373-382. Woessner J., Danciu L., Giardini D., Crowley H., Cotton F., Grünthal G., Valensise G., Arvidsson R., Basili R., Demircioglu M., Hiemer S., Meletti C., Musson R.W., Rovida A., Sesetyan K., Stucchi M., and the SHARE consortium. (2015). The 2013 European Seismic Hazard Model - Key Components and Results. Bulletin of Earthquake Engineering, 13, 3553-3596, doi:10.1007/s10518-015-9795-1. Woessner J., S. Wiemer (2005). Assessing the Quality of Earthquake Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty. Bulletin of the Seismological Society of America, 95(2), 684-698, doi:10.1785/0120040007. Zechar, D., Gerstenberger, David, M.C., Rhoades, A. (2010), Likelihood-Based Tests for Evaluating Space–Rate–Magnitude Earthquake Forecasts. Bulletin of the Seismological Society of America; 100 (3): 1184–1195. doi: https://doi.org/10.1785/0120090192. Zheng, Y. H., Anderson, J. G. & Yu, G. A (1994) Composite Source Model for Computing Realistic Synthetic Strong Ground Motions. Geophys. Res. Lett 21, 725–728, doi:10.1029/94GL00367. Zheng, Y. H., Anderson, J. G. & Yu, G. A Composite Source Model for Computing Realistic Synthetic Strong Ground Motions. Geophys. Res. Lett 21, 725–728, doi:10.1029/94GL00367 (1994). Zio E. (1996), On the use of the analytic hierarchy process in the aggregation of expert judgments, Reliability Engineering & System Safety, Volume 53 (2), 127-138, ISSN 0951-8320. Zitellini N, Gracia E, Matias L, Terrinha P, Abreu M, DeAlteriis G, Hen- riet J, Danobeitia J, Masson D, Mulder T, Ramella R, Somoza L, Diez S (2009) The quest for the Africa-Eurasia plate boundary west of the Strait of Gibraltar. Earth and Planetary Science Letters 280(1):13 50, doi: https://doi.org/10.1016/j.epsl.2008.12.005. http://hdl.handle.net/2122/12738 http://doi.org/10.5281/zenodo.3406625 http://www.tsumaps-neam.eu/documentation/ open Europe NEAM Atlantic Ocean Mediterranean Sea Aegean Sea Marmara Sea Black Sea earthquake tsunami moment magnitude crustal fault subduction interface megathrust probabilistic hazard model natural hazard Disaster Risk Reduction 05.08. Risk 04.06. Seismology 03.02. Hydrology report 2019 ftingv https://doi.org/10.5281/zenodo.3406625 https://doi.org/10.1111/j.1365-246X.2006.02912.x 2022-07-29T06:07:50Z The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-East Atlantic, the Mediterranean, and connected Seas (NEAM). In this online data product, the hazard results are provided by hazard curves calculated at 2,343 Points of Interest (POI), distributed in the North-East Atlantic (1,076 POIs), the Mediterranean Sea (1,130 POIs), and the Black Sea (137 POIs) at an average spacing of ~20 km. For each POI, hazard curves are given for the mean, 2nd, 16th, 50th, 84th, and 98th percentiles. Maps derived from hazard curves are Probability maps for Maximum Inundation Heights (MIH) of 1, 2, 5, 10, 20 meters; Hazard maps for Average Return Periods (ARP) of 500, 1,000, 2,500, 5,000, 10,000 years. For each map, precalculated displays are provided for the mean, the 16th percentile, and the 84th percentile. All data are also made accessible through an interactive web mapper and through Open Geospatial Consortium standard protocols. The model was prepared in the framework of the European Project TSUMAPS-NEAM (http://www.tsumaps-neam.eu/) funded by the mechanism of the European Civil Protection and Humanitarian Aid Operations (grant no. ECHO/SUB/2015/718568/PREV26). European-Union Civil Protection Mechanism, DG-ECHO, Agreement Number ECHO/SUB/2015/718568/PREV26 Published 6T. Studi di pericolosità sismica e da maremoto 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami 2SR TERREMOTI - Gestione delle emergenze sismiche e da maremoto Report North East Atlantic Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)