Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atm...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Levy, Richard, Harwood, David, Florindo, Fabio, Sangiorgi, Francesca, Tripati, Robert, von Eynatten, Hilmar, Gasson, Edward, Kuhn, Gerhard, Tripati, Aradhna, DeConto, Robert, Fielding, Christopher, Field, Brad, Golledge, Nicholas, McKay, Robert, Naish, Timothy, Olney, Matthew, Pollard, David, Schouten, Stefan, Talarico, Franco, Warny, Sophie, Willmott, Veronica, Acton, Gary, Panter, Kurt, Paulsen, Timothy, Taviani, Marco, Montone, Paola, Del Carlo, Paola, Pierdominici, Simona, Sagnotti, Leonardo
Other Authors: #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/2122/12220
https://doi.org/10.1073/pnas.1516030113
id ftingv:oai:www.earth-prints.org:2122/12220
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic Antarctica
Climate Optimum
Ross Sea
Miocene
spellingShingle Antarctica
Climate Optimum
Ross Sea
Miocene
Levy, Richard
Harwood, David
Florindo, Fabio
Sangiorgi, Francesca
Tripati, Robert
von Eynatten, Hilmar
Gasson, Edward
Kuhn, Gerhard
Tripati, Aradhna
DeConto, Robert
Fielding, Christopher
Field, Brad
Golledge, Nicholas
McKay, Robert
Naish, Timothy
Olney, Matthew
Pollard, David
Schouten, Stefan
Talarico, Franco
Warny, Sophie
Willmott, Veronica
Acton, Gary
Panter, Kurt
Paulsen, Timothy
Taviani, Marco
Montone, Paola
Del Carlo, Paola
Pierdominici, Simona
Sagnotti, Leonardo
Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene
topic_facet Antarctica
Climate Optimum
Ross Sea
Miocene
description Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene. Published 3453–3458 5A. Paleoclima e ricerche polari JCR Journal
author2 #PLACEHOLDER_PARENT_METADATA_VALUE#
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia
Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia
format Article in Journal/Newspaper
author Levy, Richard
Harwood, David
Florindo, Fabio
Sangiorgi, Francesca
Tripati, Robert
von Eynatten, Hilmar
Gasson, Edward
Kuhn, Gerhard
Tripati, Aradhna
DeConto, Robert
Fielding, Christopher
Field, Brad
Golledge, Nicholas
McKay, Robert
Naish, Timothy
Olney, Matthew
Pollard, David
Schouten, Stefan
Talarico, Franco
Warny, Sophie
Willmott, Veronica
Acton, Gary
Panter, Kurt
Paulsen, Timothy
Taviani, Marco
Montone, Paola
Del Carlo, Paola
Pierdominici, Simona
Sagnotti, Leonardo
author_facet Levy, Richard
Harwood, David
Florindo, Fabio
Sangiorgi, Francesca
Tripati, Robert
von Eynatten, Hilmar
Gasson, Edward
Kuhn, Gerhard
Tripati, Aradhna
DeConto, Robert
Fielding, Christopher
Field, Brad
Golledge, Nicholas
McKay, Robert
Naish, Timothy
Olney, Matthew
Pollard, David
Schouten, Stefan
Talarico, Franco
Warny, Sophie
Willmott, Veronica
Acton, Gary
Panter, Kurt
Paulsen, Timothy
Taviani, Marco
Montone, Paola
Del Carlo, Paola
Pierdominici, Simona
Sagnotti, Leonardo
author_sort Levy, Richard
title Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene
title_short Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene
title_full Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene
title_fullStr Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene
title_full_unstemmed Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene
title_sort antarctic ice sheet sensitivity to atmospheric co2 variations in the early to mid-miocene
publishDate 2016
url http://hdl.handle.net/2122/12220
https://doi.org/10.1073/pnas.1516030113
geographic Antarctic
Ross Sea
The Antarctic
geographic_facet Antarctic
Ross Sea
The Antarctic
genre Antarc*
Antarctic
Antarctica
Arctic
Ice Sheet
Ross Sea
The Cryosphere
genre_facet Antarc*
Antarctic
Antarctica
Arctic
Ice Sheet
Ross Sea
The Cryosphere
op_relation Proceedings of the National Academy of Sciences of the United States of America
13/113 (2016)
1. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report Intergovernmental Panel on Climate Change (Cambridge Univ Press, Cambridge, UK). 2. Meinshausen M, et al. (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1-2):213–241. 3. Badger MPS, et al. (2013) CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet. Paleoceanography 28(1):42–53. 4. Greenop R, Foster GL, Wilson PA, Lear CH (2014) Middle Miocene climate instability associated with high-amplitude CO2 variability. Paleoceanography 29(9):2014PA002653. 5. Foster GL, Lear CH, Rae JWB (2012) The evolution of pCO2, ice volume and climate during the middle Miocene. Earth Planet Sci Lett 341–344(0):243–254. 6. Zhang YG, Pagani M, Liu Z, Bohaty SM, DeConto R (2013) A 40-million-year history of atmospheric CO2. Philo Trans R Soc A: Math Phys Engineer Sci 371(2001):1–20. 7. Kürschner WM, Kvaˇcek Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci USA 105(2):449–453. 8. Retallack GJ (2009) Greenhouse crises of the past 300 million years. Geol Soc Am Bull 121(9-10):1441–1455. 9. Ekart DD, Cerling TE, Montanez IP, Tabor NJ (1999) A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatomospheric carbon dioxide. Am J Sci 299(10):805–827. 10. You Y, Huber M, Müller RD, Poulsen CJ, Ribbe J (2009) Simulation of the Middle Miocene Climate Optimum. Geophys Res Lett 36(4):1–5. 11. Herold N, Seton M, Müller RD, You Y, Huber M (2008) Middle Miocene tectonic boundary conditions for use in climate models. Geochem Geophys Geosyst 9(10): Q10009.12. Herold N, Huber M, Müller RD (2011) Modeling the Miocene Climatic Optimum. Part I: Land and atmosphere*. J Clim 24(24):6353–6372. 13. Herold N, Huber M, Müller RD, SetonM(2012) Modeling the Miocene climatic optimum: Ocean circulation. Paleoceanography 27(1):PA1209. 14. Holbourn A, et al. (2014) Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42(1):19–22. 15. Holbourn A, Kuhnt W, Kochhann KGD, Andersen N, Sebastian Meier KJ (2015) Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum. Geology 43(2):123–126. 16. Flower BP, Kennett JP (1993) Middle Miocene ocean-climate transition; high-resolution oxygen and carbon isotopic records from Deep Sea Drilling Project Site 588A, Southwest Pacific. Paleoceanography 8(6):811–843. 17. Shevenell AE, Kennett JP, Lea DW (2008) Middle Miocene ice sheet dynamics, deepsea temperatures, and carbon cycling: A Southern Ocean perspective. Geochem Geophys Geosyst 9(2):Q02006. 18. Woodruff F, Savin S (1991) Mid-Miocene isotope stratigraphy in the deep sea: High-resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography 6(6):755–806. 19. Miller KG, Wright JD, Faribanks RG (1991) Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J Geophys Res 96(B4):6829–6848. 20. John CM, et al. (2011) Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic-carbonate stratigraphic record of the northeastern Australian margin. Earth Planet Sci Lett 304(3–4):455–467. 21. Kominz MA, et al. (2008) Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plaoin coreholes: An error analysis. Basin Res 20: 211–226. 22. Fretwell P, et al. (2013) Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7(1):375–393. 23. Harwood D, Florindo F, Talarico F, Levy RH, eds (2008–2009) Studies from the ANDRILL Southern McMurdo Sound Project, Antarctica. Initial Science Report on AND-2A. Terra Antartica 15(1):235. 24. Fielding CR, Whittaker J, Henrys SA, Wilson TJ, Naish TR (2008) Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history. Palaeogeogr Palaeoclimatol Palaeoecol 260(1):8–29. 25. Gasson E, DeConto RM, Pollard D, Levy RH (2016) Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc Natl Acad Sci USA 113:3459–3464. 26. Passchier S, et al. (2011) Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica. Geol Soc Am Bull 123(11-12):2352–2365. 27. Fielding CR, et al. (2011) Sequence stratigraphy of the ANDRILL AND-2A drillcore, Antarctica: A long-term, ice-proximal record of Early to Mid-Miocene climate, sealevel and glacial dynamism. Palaeogeogr Palaeoclimatol Palaeoecol 305(1-4):337–351. 28. Passchier S, Falk CJ, Florindo F (2013) Orbitally paced shifts in the particle size of Antarctic continental shelf sediments in response to ice dynamics during the Miocene climatic optimum. Geosphere 9(1):54–62. 29. Beu A, Taviani M (2013) Early Miocene Mollusca from McMurdo Sound, Antarctica (ANDRILL 2A drill core), with a review of Antarctic Oligocene and Neogene Pectinidae (Bivalvia). Palaeontology 57(2):299–342. 30. Patterson MO, Ishman SE (2012) Neogene benthic foraminiferal assemblages and paleoenvironmental record for McMurdo Sound, Antarctica. Geosphere 8(6): 1331–1341. 31. Feakins SJ, Warny S, Lee J-E (2012) Hydrologic cycling over Antarctica during the middle Miocene warming. Nat Geosci 5(8):557–560. 32. Warny S, et al. (2009) Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene. Geology 37(10):955–958. 33. Griener KW, Warny S, Askin R, Acton G (2015) Early to middle Miocene vegetation history of Antarctica supports eccentricity-paced warming intervals during the Antarctic icehouse phase. Global Planet Change 127(0):67–78. 34. Lewis AR, Ashworth AC (2015) An early to middle Miocene record of ice-sheet and landscape evolution from the Friis Hills, Antarctica. Geol Soc Am Bull, 10.1130/B31319.1. 35. De Santis L, Anderson JB, Brancolini G, Zayatz I (1995) Seismic Record of Late Oligocene Through Miocene Glaciation on the Central and Eastern Continental Shelf of the Ross Sea. Geology and Seismic Stratigraphy of the Antarctic Margin (AGU, Washington, DC), Vol 68, pp 235–260. 36. Anderson JB, Bartek LR (1992) Cenozoic Glacial History of the Ross Sea Revealed by Intermediate Resolution Seismic Reflection Data Combined with Drill Site Information. The Antarctic Paleoenvironment: A Perspective on Global Change, eds Kennett JP, Warnke DA (American Geophysical Union, Washington, DC), Vol 56, pp 231–263. 37. McKay R, et al. (2009) The stratigraphic signature of the late Cenozoic Antarctic Ice Sheets in the Ross Embayment. Geol Soc Am Bull 121(11-12):1537–1561. 38. Goldner A, Herold N, Huber M (2014) The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1. Clim Past 10(2):523–536. 39. Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H (2005) Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438(7067): 483–487. 40. Lewis AR, et al. (2008) Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc Natl Acad Sci USA 105(31):10676–10680. 41. Naish T, et al. (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458(7236):322–328. 42. Cook CP, et al. (2013) Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat Geosci 6(9):765–769. 43. Pollard D, DeConto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458(7236):329–332. 44. Pollard D, DeConto RM, Alley RB (2015) Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet Sci Lett 412(0):112–121. 45. Dlugokencky E, Tans P (2016) Trends in Atmospheric Carbon Dioxide. Available at www.esrl.noaa.gov/gmd/ccgg/trends/. 46. Ogg JG (2012) Geomagnetic polarity time scale. The Geologic Time Scale, eds Gradstein FM, Schmitz JGOD, Ogg GM (Elsevier, Boston), pp 85–113. 47. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299(5885):715–717. 48. Laskar J, Fienga A, Gastineau M, Manche H (2011) La2010: A new orbital solution for the long-term motion of the Earth. Astron Astrophys 532(A89):1–15. 49. Wilson DS, et al. (2012) Antarctic topography at the Eocene-Oligocene boundary. Palaeogeogr Palaeoclimatol Palaeoecol 335-336(2012):24–34. 50. Sugden D, Denton G (2004) Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis. Geol Soc Am Bull 116(7-8):840–857. 51. Levy RH, et al. (2012) Late Neogene climate and glacial history of the Southern Victoria Land coast from integrated drill core, seismic and outcrop data. Global Planet Change 80-81(Special Issue):61–84. 52. Fitzgerald PG (1992) The Transantarctic Mountains of southern Victoria Land: The application of apatite fission track analysis to a rift shoulder uplift. Tectonics 11(3): 634–662. 53. Kyle PR, Muncy HL (1989) Geology and geochronology of McMurdo Volcanic Group rocks in the vicinity of Lake Morning, McMurdo Sound, Antarctica. Antarct Sci 1(04): 345–350. 54. Marcano MC, et al. (2009) Chronostratigraphic and paleoenvironmental constraints derived from the 87Sr/86Sr signal of Miocene bivalves, Southern McMurdo Sound, Antarctica. Global Planet Change 69(3):124–132. 55. Di Vincenzo G, Bracciali L, Del Carlo P, Panter K, Rocchi S (2009) 40Ar-39Ar dating of volcanogenic products from the AND-2A core (ANDRILL Southern McMurdo Sound Project, Antarctica): Correlations with the Erebus Volcanic Province and implications for the age model of the core. Bull Volcanol 72:487–505. 56. Florindo F, et al. (2013) Paleomagnetism and biostratigraphy of sediments from Southern Ocean ODP Site 744 (southern Kerguelen Plateau): Implications for earlyto- middle Miocene climate in Antarctica. Global Planetary Change 110(0):434–454. 57. Talarico FM, Sandroni S (2011) Early Miocene basement clasts in ANDRILL AND-2A core and their implications for paleoenvironmental changes in the McMurdo Sound region (western Ross Sea, Antarctica). Global Planet Change 78(1–2):23–35. 58. Hauptvogel DW, Passchier S (2012) Early–Middle Miocene (17–14 Ma) Antarctic ice dynamics reconstructed from the heavy mineral provenance in the AND-2A drill core, Ross Sea, Antarctica. Global Planet Change 82–83:38–50. 59. Roser BP, Pyne AR (1989) Wholerock geochemistry. Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound, DSIR Bulletin, ed Barrett PJ (DSIR Publishing, Wellington, New Zealand), Vol 245, pp 175–184. 60. Bahlburg H, Dobrzinski N (2011) A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. Geol Soc Lond Mem 36(1):81–92. 61. Schouten S, Hopmans EC, Schefuß E, Sinninghe_Damste JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures. Earth Planet Sci Lett 204:265–274. 62. Kim J-H, et al. (2010) New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta 74(16):4639–4654. 63. Kim J-H, et al. (2012) Holocene subsurface temperature variability in the eastern Antarctic continental margin. Geophys Res Lett 39(6):L06705. 64. Kalanetra KM, Bano N, Hollibaugh JT (2009) Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ Microbiol 11(9):2434–2445. 65. Tierney JE, Tingley MP (2014) A Bayesian, spatially-varying calibration model for the TEX86 proxy. Geochim Cosmochim Acta 127:83–106. 66. Hopmans EC, et al. (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224(1–2): 107–116. 67. Eagle RA, et al. (2013) The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks. Biogeosciences 10(7): 4591–4606. 68. Kim ST, O’Neil JR (1997) Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475. 69. Marcano MC, Frank TD, Mukasa SB, Lohmann KC, Taviani M (2015) Diagenetic incorporation of Sr into aragonitic bivalve shells: Implications for chronostratigraphic and palaeoenvironmental interpretations. The Depositional Record 1(1):38–52. 70. Frank TD, Gui Z, ANDRILL SMS Science Team (2010) Cryogenic origin for brine in the subsurface of southern McMurdo Sound, Antarctica. Geology 38(7):587–590. 71. Liebrand D, et al. (2011) Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene. Clim Past 7(3):869–880.
1091-6490
http://hdl.handle.net/2122/12220
doi:10.1073/pnas.1516030113
op_rights open
op_doi https://doi.org/10.1073/pnas.1516030113
https://doi.org/10.1130/B31319.1.
container_title Proceedings of the National Academy of Sciences
container_volume 113
container_issue 13
container_start_page 3453
op_container_end_page 3458
_version_ 1766271567128428544
spelling ftingv:oai:www.earth-prints.org:2122/12220 2023-05-15T14:01:37+02:00 Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene Levy, Richard Harwood, David Florindo, Fabio Sangiorgi, Francesca Tripati, Robert von Eynatten, Hilmar Gasson, Edward Kuhn, Gerhard Tripati, Aradhna DeConto, Robert Fielding, Christopher Field, Brad Golledge, Nicholas McKay, Robert Naish, Timothy Olney, Matthew Pollard, David Schouten, Stefan Talarico, Franco Warny, Sophie Willmott, Veronica Acton, Gary Panter, Kurt Paulsen, Timothy Taviani, Marco Montone, Paola Del Carlo, Paola Pierdominici, Simona Sagnotti, Leonardo #PLACEHOLDER_PARENT_METADATA_VALUE# Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione AC, Roma, Italia Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Pisa, Pisa, Italia Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia 2016-03-29 http://hdl.handle.net/2122/12220 https://doi.org/10.1073/pnas.1516030113 en eng Proceedings of the National Academy of Sciences of the United States of America 13/113 (2016) 1. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report Intergovernmental Panel on Climate Change (Cambridge Univ Press, Cambridge, UK). 2. Meinshausen M, et al. (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1-2):213–241. 3. Badger MPS, et al. (2013) CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet. Paleoceanography 28(1):42–53. 4. Greenop R, Foster GL, Wilson PA, Lear CH (2014) Middle Miocene climate instability associated with high-amplitude CO2 variability. Paleoceanography 29(9):2014PA002653. 5. Foster GL, Lear CH, Rae JWB (2012) The evolution of pCO2, ice volume and climate during the middle Miocene. Earth Planet Sci Lett 341–344(0):243–254. 6. Zhang YG, Pagani M, Liu Z, Bohaty SM, DeConto R (2013) A 40-million-year history of atmospheric CO2. Philo Trans R Soc A: Math Phys Engineer Sci 371(2001):1–20. 7. Kürschner WM, Kvaˇcek Z, Dilcher DL (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci USA 105(2):449–453. 8. Retallack GJ (2009) Greenhouse crises of the past 300 million years. Geol Soc Am Bull 121(9-10):1441–1455. 9. Ekart DD, Cerling TE, Montanez IP, Tabor NJ (1999) A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatomospheric carbon dioxide. Am J Sci 299(10):805–827. 10. You Y, Huber M, Müller RD, Poulsen CJ, Ribbe J (2009) Simulation of the Middle Miocene Climate Optimum. Geophys Res Lett 36(4):1–5. 11. Herold N, Seton M, Müller RD, You Y, Huber M (2008) Middle Miocene tectonic boundary conditions for use in climate models. Geochem Geophys Geosyst 9(10): Q10009.12. Herold N, Huber M, Müller RD (2011) Modeling the Miocene Climatic Optimum. Part I: Land and atmosphere*. J Clim 24(24):6353–6372. 13. Herold N, Huber M, Müller RD, SetonM(2012) Modeling the Miocene climatic optimum: Ocean circulation. Paleoceanography 27(1):PA1209. 14. Holbourn A, et al. (2014) Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology 42(1):19–22. 15. Holbourn A, Kuhnt W, Kochhann KGD, Andersen N, Sebastian Meier KJ (2015) Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum. Geology 43(2):123–126. 16. Flower BP, Kennett JP (1993) Middle Miocene ocean-climate transition; high-resolution oxygen and carbon isotopic records from Deep Sea Drilling Project Site 588A, Southwest Pacific. Paleoceanography 8(6):811–843. 17. Shevenell AE, Kennett JP, Lea DW (2008) Middle Miocene ice sheet dynamics, deepsea temperatures, and carbon cycling: A Southern Ocean perspective. Geochem Geophys Geosyst 9(2):Q02006. 18. Woodruff F, Savin S (1991) Mid-Miocene isotope stratigraphy in the deep sea: High-resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography 6(6):755–806. 19. Miller KG, Wright JD, Faribanks RG (1991) Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J Geophys Res 96(B4):6829–6848. 20. John CM, et al. (2011) Timing and magnitude of Miocene eustasy derived from the mixed siliciclastic-carbonate stratigraphic record of the northeastern Australian margin. Earth Planet Sci Lett 304(3–4):455–467. 21. Kominz MA, et al. (2008) Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plaoin coreholes: An error analysis. Basin Res 20: 211–226. 22. Fretwell P, et al. (2013) Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7(1):375–393. 23. Harwood D, Florindo F, Talarico F, Levy RH, eds (2008–2009) Studies from the ANDRILL Southern McMurdo Sound Project, Antarctica. Initial Science Report on AND-2A. Terra Antartica 15(1):235. 24. Fielding CR, Whittaker J, Henrys SA, Wilson TJ, Naish TR (2008) Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history. Palaeogeogr Palaeoclimatol Palaeoecol 260(1):8–29. 25. Gasson E, DeConto RM, Pollard D, Levy RH (2016) Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc Natl Acad Sci USA 113:3459–3464. 26. Passchier S, et al. (2011) Early and middle Miocene Antarctic glacial history from the sedimentary facies distribution in the AND-2A drill hole, Ross Sea, Antarctica. Geol Soc Am Bull 123(11-12):2352–2365. 27. Fielding CR, et al. (2011) Sequence stratigraphy of the ANDRILL AND-2A drillcore, Antarctica: A long-term, ice-proximal record of Early to Mid-Miocene climate, sealevel and glacial dynamism. Palaeogeogr Palaeoclimatol Palaeoecol 305(1-4):337–351. 28. Passchier S, Falk CJ, Florindo F (2013) Orbitally paced shifts in the particle size of Antarctic continental shelf sediments in response to ice dynamics during the Miocene climatic optimum. Geosphere 9(1):54–62. 29. Beu A, Taviani M (2013) Early Miocene Mollusca from McMurdo Sound, Antarctica (ANDRILL 2A drill core), with a review of Antarctic Oligocene and Neogene Pectinidae (Bivalvia). Palaeontology 57(2):299–342. 30. Patterson MO, Ishman SE (2012) Neogene benthic foraminiferal assemblages and paleoenvironmental record for McMurdo Sound, Antarctica. Geosphere 8(6): 1331–1341. 31. Feakins SJ, Warny S, Lee J-E (2012) Hydrologic cycling over Antarctica during the middle Miocene warming. Nat Geosci 5(8):557–560. 32. Warny S, et al. (2009) Palynomorphs from a sediment core reveal a sudden remarkably warm Antarctica during the middle Miocene. Geology 37(10):955–958. 33. Griener KW, Warny S, Askin R, Acton G (2015) Early to middle Miocene vegetation history of Antarctica supports eccentricity-paced warming intervals during the Antarctic icehouse phase. Global Planet Change 127(0):67–78. 34. Lewis AR, Ashworth AC (2015) An early to middle Miocene record of ice-sheet and landscape evolution from the Friis Hills, Antarctica. Geol Soc Am Bull, 10.1130/B31319.1. 35. De Santis L, Anderson JB, Brancolini G, Zayatz I (1995) Seismic Record of Late Oligocene Through Miocene Glaciation on the Central and Eastern Continental Shelf of the Ross Sea. Geology and Seismic Stratigraphy of the Antarctic Margin (AGU, Washington, DC), Vol 68, pp 235–260. 36. Anderson JB, Bartek LR (1992) Cenozoic Glacial History of the Ross Sea Revealed by Intermediate Resolution Seismic Reflection Data Combined with Drill Site Information. The Antarctic Paleoenvironment: A Perspective on Global Change, eds Kennett JP, Warnke DA (American Geophysical Union, Washington, DC), Vol 56, pp 231–263. 37. McKay R, et al. (2009) The stratigraphic signature of the late Cenozoic Antarctic Ice Sheets in the Ross Embayment. Geol Soc Am Bull 121(11-12):1537–1561. 38. Goldner A, Herold N, Huber M (2014) The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1. Clim Past 10(2):523–536. 39. Holbourn A, Kuhnt W, Schulz M, Erlenkeuser H (2005) Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438(7067): 483–487. 40. Lewis AR, et al. (2008) Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc Natl Acad Sci USA 105(31):10676–10680. 41. Naish T, et al. (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458(7236):322–328. 42. Cook CP, et al. (2013) Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat Geosci 6(9):765–769. 43. Pollard D, DeConto RM (2009) Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458(7236):329–332. 44. Pollard D, DeConto RM, Alley RB (2015) Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet Sci Lett 412(0):112–121. 45. Dlugokencky E, Tans P (2016) Trends in Atmospheric Carbon Dioxide. Available at www.esrl.noaa.gov/gmd/ccgg/trends/. 46. Ogg JG (2012) Geomagnetic polarity time scale. The Geologic Time Scale, eds Gradstein FM, Schmitz JGOD, Ogg GM (Elsevier, Boston), pp 85–113. 47. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299(5885):715–717. 48. Laskar J, Fienga A, Gastineau M, Manche H (2011) La2010: A new orbital solution for the long-term motion of the Earth. Astron Astrophys 532(A89):1–15. 49. Wilson DS, et al. (2012) Antarctic topography at the Eocene-Oligocene boundary. Palaeogeogr Palaeoclimatol Palaeoecol 335-336(2012):24–34. 50. Sugden D, Denton G (2004) Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis. Geol Soc Am Bull 116(7-8):840–857. 51. Levy RH, et al. (2012) Late Neogene climate and glacial history of the Southern Victoria Land coast from integrated drill core, seismic and outcrop data. Global Planet Change 80-81(Special Issue):61–84. 52. Fitzgerald PG (1992) The Transantarctic Mountains of southern Victoria Land: The application of apatite fission track analysis to a rift shoulder uplift. Tectonics 11(3): 634–662. 53. Kyle PR, Muncy HL (1989) Geology and geochronology of McMurdo Volcanic Group rocks in the vicinity of Lake Morning, McMurdo Sound, Antarctica. Antarct Sci 1(04): 345–350. 54. Marcano MC, et al. (2009) Chronostratigraphic and paleoenvironmental constraints derived from the 87Sr/86Sr signal of Miocene bivalves, Southern McMurdo Sound, Antarctica. Global Planet Change 69(3):124–132. 55. Di Vincenzo G, Bracciali L, Del Carlo P, Panter K, Rocchi S (2009) 40Ar-39Ar dating of volcanogenic products from the AND-2A core (ANDRILL Southern McMurdo Sound Project, Antarctica): Correlations with the Erebus Volcanic Province and implications for the age model of the core. Bull Volcanol 72:487–505. 56. Florindo F, et al. (2013) Paleomagnetism and biostratigraphy of sediments from Southern Ocean ODP Site 744 (southern Kerguelen Plateau): Implications for earlyto- middle Miocene climate in Antarctica. Global Planetary Change 110(0):434–454. 57. Talarico FM, Sandroni S (2011) Early Miocene basement clasts in ANDRILL AND-2A core and their implications for paleoenvironmental changes in the McMurdo Sound region (western Ross Sea, Antarctica). Global Planet Change 78(1–2):23–35. 58. Hauptvogel DW, Passchier S (2012) Early–Middle Miocene (17–14 Ma) Antarctic ice dynamics reconstructed from the heavy mineral provenance in the AND-2A drill core, Ross Sea, Antarctica. Global Planet Change 82–83:38–50. 59. Roser BP, Pyne AR (1989) Wholerock geochemistry. Antarctic Cenozoic History from the CIROS-1 Drillhole, McMurdo Sound, DSIR Bulletin, ed Barrett PJ (DSIR Publishing, Wellington, New Zealand), Vol 245, pp 175–184. 60. Bahlburg H, Dobrzinski N (2011) A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions. Geol Soc Lond Mem 36(1):81–92. 61. Schouten S, Hopmans EC, Schefuß E, Sinninghe_Damste JS (2002) Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures. Earth Planet Sci Lett 204:265–274. 62. Kim J-H, et al. (2010) New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochim Cosmochim Acta 74(16):4639–4654. 63. Kim J-H, et al. (2012) Holocene subsurface temperature variability in the eastern Antarctic continental margin. Geophys Res Lett 39(6):L06705. 64. Kalanetra KM, Bano N, Hollibaugh JT (2009) Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters. Environ Microbiol 11(9):2434–2445. 65. Tierney JE, Tingley MP (2014) A Bayesian, spatially-varying calibration model for the TEX86 proxy. Geochim Cosmochim Acta 127:83–106. 66. Hopmans EC, et al. (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224(1–2): 107–116. 67. Eagle RA, et al. (2013) The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks. Biogeosciences 10(7): 4591–4606. 68. Kim ST, O’Neil JR (1997) Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475. 69. Marcano MC, Frank TD, Mukasa SB, Lohmann KC, Taviani M (2015) Diagenetic incorporation of Sr into aragonitic bivalve shells: Implications for chronostratigraphic and palaeoenvironmental interpretations. The Depositional Record 1(1):38–52. 70. Frank TD, Gui Z, ANDRILL SMS Science Team (2010) Cryogenic origin for brine in the subsurface of southern McMurdo Sound, Antarctica. Geology 38(7):587–590. 71. Liebrand D, et al. (2011) Antarctic ice sheet and oceanographic response to eccentricity forcing during the early Miocene. Clim Past 7(3):869–880. 1091-6490 http://hdl.handle.net/2122/12220 doi:10.1073/pnas.1516030113 open Antarctica Climate Optimum Ross Sea Miocene article 2016 ftingv https://doi.org/10.1073/pnas.1516030113 https://doi.org/10.1130/B31319.1. 2022-07-29T06:07:12Z Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene. Published 3453–3458 5A. Paleoclima e ricerche polari JCR Journal Article in Journal/Newspaper Antarc* Antarctic Antarctica Arctic Ice Sheet Ross Sea The Cryosphere Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Antarctic Ross Sea The Antarctic Proceedings of the National Academy of Sciences 113 13 3453 3458