Atmospheric dispersion modelling of CO2 emission in the Colli Albani volcanic district (central Italy)

Carbon dioxide is a gas denser than air, and its point-source ground emission from natural systems or from areas impacted by CO2 injection underground may result in hazardous accumulation, especially in topographically-depressed sites. The use of atmospheric dispersion numerical models helps predict...

Full description

Bibliographic Details
Published in:Annals of Geophysics
Main Authors: Gasparini, Andrea, Grandia, Fidel, Tarchini, Luca
Other Authors: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia, AmphoS21 Consulting S.L., Dipartimento di Scienze, Università Roma Tre
Format: Article in Journal/Newspaper
Language:English
Published: 2017
Subjects:
CO2
Online Access:http://hdl.handle.net/2122/10624
https://doi.org/10.4401/ag-7286
id ftingv:oai:www.earth-prints.org:2122/10624
record_format openpolar
institution Open Polar
collection Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia)
op_collection_id ftingv
language English
topic CO2
atmospheric dispersion
Risk assessment
modelling
soil flux
air concentration
04.04. Geology
04.08. Volcanology
05.08. Risk
spellingShingle CO2
atmospheric dispersion
Risk assessment
modelling
soil flux
air concentration
04.04. Geology
04.08. Volcanology
05.08. Risk
Gasparini, Andrea
Grandia, Fidel
Tarchini, Luca
Atmospheric dispersion modelling of CO2 emission in the Colli Albani volcanic district (central Italy)
topic_facet CO2
atmospheric dispersion
Risk assessment
modelling
soil flux
air concentration
04.04. Geology
04.08. Volcanology
05.08. Risk
description Carbon dioxide is a gas denser than air, and its point-source ground emission from natural systems or from areas impacted by CO2 injection underground may result in hazardous accumulation, especially in topographically-depressed sites. The use of atmospheric dispersion numerical models helps predicting the dispersion of the CO2-enriched gas plume once emitted from underground and allows an accurate map of hazard level through time under particular meteorological conditions. In this study, the accuracy of atmospheric dispersion simulations has been tested using a natural system of CO2 emission to atmosphere from underground in an area called Solforata di Pomezia, near the city of Rome in central Italy. This area is located in the Alban Hills, which underwent volcanic activity during the Quaternary, and is characterised by low permeability volcanic and sedimentary formations that allow the accumulation of gas at shallow depths and below surface. This site has been long investigated in terms of soil CO2 emission rates, which range from 44 to 95 ton∙day-1. Using the TWODEE2 numerical code, a number of simulations were performed considering a set of combined CO2 soil flux emission and meteorological (wind, temperature) from literature. The results fit well in the range of measured CO2 concentration in air at distinct heights in the site. The model does not predict lethal gas concentration at heights 1 and 2 m above the ground based on actual soil emission rate (95 ton∙day-1). Two probabilistic models were developed with emission rate five (500 ton∙day-1) and ten (1000 ton∙day-1 times bigger than nowadays but still no hazardous levels were predicted. Published S0550 6A. Geochimica per l'ambiente JCR Journal
author2 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia
AmphoS21 Consulting S.L.
Dipartimento di Scienze, Università Roma Tre
format Article in Journal/Newspaper
author Gasparini, Andrea
Grandia, Fidel
Tarchini, Luca
author_facet Gasparini, Andrea
Grandia, Fidel
Tarchini, Luca
author_sort Gasparini, Andrea
title Atmospheric dispersion modelling of CO2 emission in the Colli Albani volcanic district (central Italy)
title_short Atmospheric dispersion modelling of CO2 emission in the Colli Albani volcanic district (central Italy)
title_full Atmospheric dispersion modelling of CO2 emission in the Colli Albani volcanic district (central Italy)
title_fullStr Atmospheric dispersion modelling of CO2 emission in the Colli Albani volcanic district (central Italy)
title_full_unstemmed Atmospheric dispersion modelling of CO2 emission in the Colli Albani volcanic district (central Italy)
title_sort atmospheric dispersion modelling of co2 emission in the colli albani volcanic district (central italy)
publishDate 2017
url http://hdl.handle.net/2122/10624
https://doi.org/10.4401/ag-7286
genre Arctic
genre_facet Arctic
op_relation Annals of Geophysics
5/60(2017)
Acocella, V., Salvini, F., Funicello, R., Faccenna, C., 1999. The role of transfer structures on volcanic Activity at Campi Flegrei (Southern Italy). Journal of Volcanology and Geothermal Research, 91(2), 123-139. Billing, W.FD., Lucken, J.O., Mortensen, D.A., Peterson, K.M., 1982. Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia. 53, 7-11. Carapezza, M.L., and Granieri, D., 2004. CO2 soil flux at Vulcano (Italy): comparison between active and passive methods. App. Geochem. 19, 73-88. Carapezza, M.L., Barberi, F., Tarchini, L., Cavarra, L., Granieri, D. ,2005. Le emissioni gassose dell’area vulcanica dei Colli Albani. In: Carapezza, M.L., et al. (Ed.), Nuovi dati sull’attività recente del cratere del Lago Albano e sul degassamento dei Colli Albani. Atti Accad. Naz. Lincei, 218, 229–242. Carapezza, M.L., Barberi, F., Ranaldi, M., Ricci, T., Tarchini, L., Barrancos, J., Fischer, C., Granieri, D., Lucchetti, C., Melian, G., Perez, N., Tuccimei, P., Vogel, A., Weber, K., 2012. Hazardous gas emissions from the flanks of the quiescent Colli Albano volcano (Rome, Italy). App. Geochem. 22, 1767-1782. Carrigan, C.R., 2010. Noble gas field operations test: Towards detecting ’the smoking gun’ during an on-site inspection. CTBTO Spectrum 15, 1, 22–25. Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543- 552. Chiodini, G., and Frondini, F., 2001. Carbon dioxide degassing from the Albani Hills vocanic region, Central Italy. Chemical Geology 177, 67-83. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett., 31, L07615, DOI:10.1029/2004GL019480. Costa, A., Macedonio, G., Chiodini, G., 2005. Numerical model of gas dispersion emitted from volcanCO2 ATMOSPHERIC DISPERSION MODELLING AND RISK ASSESSMENT 11 ic sources. Annals of Geophysics, 48, 508-815. Costa, A., Chiodini, G., Granieri, D., Folch, A., Hankin, R., Caliro, S., Avino, R., Cardellini, C., 2008. A shallow layer model for heavy gas dispersion from natural sources: application on hazard assessment at Caldara di Manziana, Italy. Geochem. Geophys. Geosys. 9, Issue 3 pp 1-13. De Lary, L., Loschetter, A., Bouc, O., Rohmer, J., Oldenburg, C.M., 2012. Assessing health impacts of CO2 leakage from a geological storage site into buildings: role of attenuation in the unsaturated zone and buildings foundation. Int. Journal of Greenhouse Gas Control, 9, 322-333. DOI:10.1016/j.ijggc.2012.04.011 De Rita, D., Funicello, R., Parotto, M., 1988. Geological map of the Colli Albani volcanic complex (“Vulcano Laziale”), CNR-GNV, Joint venture ENEA-AGIP. De Rita, D., Faccenna, C., Funicello, R., Rosa, C., 1995. Stratigraphy and volcano-tectonics. In Triglia, R (Ed.), The Volcano of Alban Hills, Rome, 33-71. Funicello, R., Mattei, M., Voltaggio, M., 1992. Recent strike slip faulting and problems of possible reactivation in Rome area. In: Boschi, E., Dragoni, M., (Eeds.), Earthquake Prediction, 225-236, Rome. Folch, A., Costa, A, Hankin, R.K.S., 2007. TWODEE-2 Computer code and related documentation (for internal use only). Project INGV-DPC V5 Diffuse degassing in Italy (2005-2007). Folch, A., Costa, A, Hankin, R.K.S., 2008. TWODEE-2: A shallow layer model for dense gas dispersion on complex topography. Computers & Geosciences, 35, 3, 667-674. doi:10.1016/j.cageo.2007.12.017 Gasparini, A., Credoz, A., Grandia, F., Garcia, D.A., Bruno, J., 2015. Experimental and numerical modeling of CO2 leakage in the vadose zone. Greenhouse Gas Sci. Technol. 5, 1-24; DOI:10.1002/ ghg1523. Hankin, R., Britter, R., 1999 a. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 1: Mathematical basis and physical assumptions. J. Hazard. Mater. A66, 211-226. Hankin, R., Britter, R., 1999 b. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 2: Outline and validation of the computational scheme. J. Hazard. Mater. A66, 227-237. Hankin, R., Britter, R., 1999 c. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 3: Experimental validation (Theory island). J. Hazard. Mater. A66, 236- 261. Istituto Geografico Militare, Carta Geologica d’Italia (II edizione), Foglio Geologico 100.00 ED50 UTM 32N. Laiolo M., Ranaldi M., Tarchini L., Carapezza M.L., Coppola D., Ricci T., Cigolini C., 2016. The effects of environmental parameters on diffuse degassing at Stromboli volcano: Insights from joint monitoring of soil CO2 flux and radon activity. J. Volcanol. Geotherm. Res., 315, 65-78. DOI:10.1016/j.jvolgeores. 2016.02.004. Norstadt, F.A., and Porter, L.K., (1984). Soil gases and temperatures: a beef cattle feedlot compared to alfalfa. Soil Sci. Soc. Am. J. 48, 783–789. DOI:10.2136/sssaj1984.03615995004800040017x. Oldenburg, C.M., and Unger, A.J.A., 2003. On leakage and seepage from geologic carbon sequestration sites: unsaturated zone attenuation. Vadose Zone J., 2, 3, 287–296. Oldenburg, C.M., Lewicki, J.L., Pan, L., Dobeck, L., Spangler, L., 2010. Origin of the patchy emission pattern at the ZERT CO2 release test. Environ Earth Sci, 60, 241–250.Raich, J.W., & Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. Schiff, H.I., Mackay, G-I-. Bechara, J., 1994. The use of Tunable Diode Laser Absorption spectroscopy for atmospheric measurements. In: Sigrist, M.W. (ed.), Air Monitoring by Spectroscopy Techniques. J. Wiley & Sons, 239-333. Selvaggi, G., and D’Ajello Caracciolo, F., 1998. Seismic deformation at the Alban Hills volcano during the 1989-1990 seismic sequence. Annali di Geofisica, 41, 2, 225-231. Tittel, F.K., Weidmann, D., Oppenheimer, C., Gianfrani, L., 2006. Laser absorption spectroscopy for volcano monitoring. Opt. Photom. News, Opt. Soc. Am. 24-31. Tolomei, C., Attori, S., Salvi, S., Allievi, J., Ferretti, A., Prati, C., Rocca, F., Stramondo, S., Feuillet, N., 2003. Crustal deformation of the Alban Hills volcanic complex (central Italy) by permanent scatterers analysis. In: Proc. FRINGE 2003 Workshop, Frascati, Italy, 1-5 December 2003 (ESA SP-550, June 2004). Van Cleve, K., Oechel. W.C., Hom, J.L., 1990. Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior GASPARINI ET AL. 12 Alaska. Can. J. For. Res., 20, 1530-1535. Voltaggio, M., and Barbieri, M., 1995. Geochronology. In: Triglia, R., (Ed.), The Volcano of the Alban Hills, Rome, 167-192. Waddington, E.D., Cunningham, J., Harder, S.L., 1996. The effects of snow ventilation on chemical concentration, in Chemical Exchange Between the Atmosphere and Polar Snow, ed. by WolffEW and BalesRC , Springer, New York, pp. 403–451. Weber, K., Bothe, K., Pistiridis, S., Laue, M., Fischer, C., Van Haren, G., Gonzales Ramos, Y., Barrancos, J., Hernandez, P., Perez, N.M., Pabel, K., Sosef, M., 2005. Gas emission measurements from Teide volcano (Tenerife, Canary Islands, Spain) by means of optical remote sensing. In: Proc. 99th Annual Conf. and Exhibition Air and Waste Management Association, June 20-23, 2005, New Orleans, Louisiana, USA, A&WMA Pittsburgh, PA, 2006. Xu, M., and Qi, Y., 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677.
2037-416X
http://hdl.handle.net/2122/10624
doi:10.4401/ag-7286
op_rights open
op_doi https://doi.org/10.4401/ag-7286
container_title Annals of Geophysics
container_volume 60
container_issue 5
_version_ 1766302626094252032
spelling ftingv:oai:www.earth-prints.org:2122/10624 2023-05-15T14:28:28+02:00 Atmospheric dispersion modelling of CO2 emission in the Colli Albani volcanic district (central Italy) Gasparini, Andrea Grandia, Fidel Tarchini, Luca Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma1, Roma, Italia AmphoS21 Consulting S.L. Dipartimento di Scienze, Università Roma Tre 2017-05-06 http://hdl.handle.net/2122/10624 https://doi.org/10.4401/ag-7286 en eng Annals of Geophysics 5/60(2017) Acocella, V., Salvini, F., Funicello, R., Faccenna, C., 1999. The role of transfer structures on volcanic Activity at Campi Flegrei (Southern Italy). Journal of Volcanology and Geothermal Research, 91(2), 123-139. Billing, W.FD., Lucken, J.O., Mortensen, D.A., Peterson, K.M., 1982. Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia. 53, 7-11. Carapezza, M.L., and Granieri, D., 2004. CO2 soil flux at Vulcano (Italy): comparison between active and passive methods. App. Geochem. 19, 73-88. Carapezza, M.L., Barberi, F., Tarchini, L., Cavarra, L., Granieri, D. ,2005. Le emissioni gassose dell’area vulcanica dei Colli Albani. In: Carapezza, M.L., et al. (Ed.), Nuovi dati sull’attività recente del cratere del Lago Albano e sul degassamento dei Colli Albani. Atti Accad. Naz. Lincei, 218, 229–242. Carapezza, M.L., Barberi, F., Ranaldi, M., Ricci, T., Tarchini, L., Barrancos, J., Fischer, C., Granieri, D., Lucchetti, C., Melian, G., Perez, N., Tuccimei, P., Vogel, A., Weber, K., 2012. Hazardous gas emissions from the flanks of the quiescent Colli Albano volcano (Rome, Italy). App. Geochem. 22, 1767-1782. Carrigan, C.R., 2010. Noble gas field operations test: Towards detecting ’the smoking gun’ during an on-site inspection. CTBTO Spectrum 15, 1, 22–25. Chiodini, G., Cioni, R., Guidi, M., Raco, B., Marini, L., 1998. Soil CO2 flux measurements in volcanic and geothermal areas. Appl. Geochem. 13, 543- 552. Chiodini, G., and Frondini, F., 2001. Carbon dioxide degassing from the Albani Hills vocanic region, Central Italy. Chemical Geology 177, 67-83. Chiodini, G., Cardellini, C., Amato, A., Boschi, E., Caliro, S., Frondini, F., Ventura, G., 2004. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett., 31, L07615, DOI:10.1029/2004GL019480. Costa, A., Macedonio, G., Chiodini, G., 2005. Numerical model of gas dispersion emitted from volcanCO2 ATMOSPHERIC DISPERSION MODELLING AND RISK ASSESSMENT 11 ic sources. Annals of Geophysics, 48, 508-815. Costa, A., Chiodini, G., Granieri, D., Folch, A., Hankin, R., Caliro, S., Avino, R., Cardellini, C., 2008. A shallow layer model for heavy gas dispersion from natural sources: application on hazard assessment at Caldara di Manziana, Italy. Geochem. Geophys. Geosys. 9, Issue 3 pp 1-13. De Lary, L., Loschetter, A., Bouc, O., Rohmer, J., Oldenburg, C.M., 2012. Assessing health impacts of CO2 leakage from a geological storage site into buildings: role of attenuation in the unsaturated zone and buildings foundation. Int. Journal of Greenhouse Gas Control, 9, 322-333. DOI:10.1016/j.ijggc.2012.04.011 De Rita, D., Funicello, R., Parotto, M., 1988. Geological map of the Colli Albani volcanic complex (“Vulcano Laziale”), CNR-GNV, Joint venture ENEA-AGIP. De Rita, D., Faccenna, C., Funicello, R., Rosa, C., 1995. Stratigraphy and volcano-tectonics. In Triglia, R (Ed.), The Volcano of Alban Hills, Rome, 33-71. Funicello, R., Mattei, M., Voltaggio, M., 1992. Recent strike slip faulting and problems of possible reactivation in Rome area. In: Boschi, E., Dragoni, M., (Eeds.), Earthquake Prediction, 225-236, Rome. Folch, A., Costa, A, Hankin, R.K.S., 2007. TWODEE-2 Computer code and related documentation (for internal use only). Project INGV-DPC V5 Diffuse degassing in Italy (2005-2007). Folch, A., Costa, A, Hankin, R.K.S., 2008. TWODEE-2: A shallow layer model for dense gas dispersion on complex topography. Computers & Geosciences, 35, 3, 667-674. doi:10.1016/j.cageo.2007.12.017 Gasparini, A., Credoz, A., Grandia, F., Garcia, D.A., Bruno, J., 2015. Experimental and numerical modeling of CO2 leakage in the vadose zone. Greenhouse Gas Sci. Technol. 5, 1-24; DOI:10.1002/ ghg1523. Hankin, R., Britter, R., 1999 a. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 1: Mathematical basis and physical assumptions. J. Hazard. Mater. A66, 211-226. Hankin, R., Britter, R., 1999 b. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 2: Outline and validation of the computational scheme. J. Hazard. Mater. A66, 227-237. Hankin, R., Britter, R., 1999 c. TWODEE: the Health and Safety Laboratory’s shallow layer model for heavy gas dispersion. Part 3: Experimental validation (Theory island). J. Hazard. Mater. A66, 236- 261. Istituto Geografico Militare, Carta Geologica d’Italia (II edizione), Foglio Geologico 100.00 ED50 UTM 32N. Laiolo M., Ranaldi M., Tarchini L., Carapezza M.L., Coppola D., Ricci T., Cigolini C., 2016. The effects of environmental parameters on diffuse degassing at Stromboli volcano: Insights from joint monitoring of soil CO2 flux and radon activity. J. Volcanol. Geotherm. Res., 315, 65-78. DOI:10.1016/j.jvolgeores. 2016.02.004. Norstadt, F.A., and Porter, L.K., (1984). Soil gases and temperatures: a beef cattle feedlot compared to alfalfa. Soil Sci. Soc. Am. J. 48, 783–789. DOI:10.2136/sssaj1984.03615995004800040017x. Oldenburg, C.M., and Unger, A.J.A., 2003. On leakage and seepage from geologic carbon sequestration sites: unsaturated zone attenuation. Vadose Zone J., 2, 3, 287–296. Oldenburg, C.M., Lewicki, J.L., Pan, L., Dobeck, L., Spangler, L., 2010. Origin of the patchy emission pattern at the ZERT CO2 release test. Environ Earth Sci, 60, 241–250.Raich, J.W., & Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81-99. Schiff, H.I., Mackay, G-I-. Bechara, J., 1994. The use of Tunable Diode Laser Absorption spectroscopy for atmospheric measurements. In: Sigrist, M.W. (ed.), Air Monitoring by Spectroscopy Techniques. J. Wiley & Sons, 239-333. Selvaggi, G., and D’Ajello Caracciolo, F., 1998. Seismic deformation at the Alban Hills volcano during the 1989-1990 seismic sequence. Annali di Geofisica, 41, 2, 225-231. Tittel, F.K., Weidmann, D., Oppenheimer, C., Gianfrani, L., 2006. Laser absorption spectroscopy for volcano monitoring. Opt. Photom. News, Opt. Soc. Am. 24-31. Tolomei, C., Attori, S., Salvi, S., Allievi, J., Ferretti, A., Prati, C., Rocca, F., Stramondo, S., Feuillet, N., 2003. Crustal deformation of the Alban Hills volcanic complex (central Italy) by permanent scatterers analysis. In: Proc. FRINGE 2003 Workshop, Frascati, Italy, 1-5 December 2003 (ESA SP-550, June 2004). Van Cleve, K., Oechel. W.C., Hom, J.L., 1990. Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior GASPARINI ET AL. 12 Alaska. Can. J. For. Res., 20, 1530-1535. Voltaggio, M., and Barbieri, M., 1995. Geochronology. In: Triglia, R., (Ed.), The Volcano of the Alban Hills, Rome, 167-192. Waddington, E.D., Cunningham, J., Harder, S.L., 1996. The effects of snow ventilation on chemical concentration, in Chemical Exchange Between the Atmosphere and Polar Snow, ed. by WolffEW and BalesRC , Springer, New York, pp. 403–451. Weber, K., Bothe, K., Pistiridis, S., Laue, M., Fischer, C., Van Haren, G., Gonzales Ramos, Y., Barrancos, J., Hernandez, P., Perez, N.M., Pabel, K., Sosef, M., 2005. Gas emission measurements from Teide volcano (Tenerife, Canary Islands, Spain) by means of optical remote sensing. In: Proc. 99th Annual Conf. and Exhibition Air and Waste Management Association, June 20-23, 2005, New Orleans, Louisiana, USA, A&WMA Pittsburgh, PA, 2006. Xu, M., and Qi, Y., 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7, 667-677. 2037-416X http://hdl.handle.net/2122/10624 doi:10.4401/ag-7286 open CO2 atmospheric dispersion Risk assessment modelling soil flux air concentration 04.04. Geology 04.08. Volcanology 05.08. Risk article 2017 ftingv https://doi.org/10.4401/ag-7286 2022-07-29T06:07:08Z Carbon dioxide is a gas denser than air, and its point-source ground emission from natural systems or from areas impacted by CO2 injection underground may result in hazardous accumulation, especially in topographically-depressed sites. The use of atmospheric dispersion numerical models helps predicting the dispersion of the CO2-enriched gas plume once emitted from underground and allows an accurate map of hazard level through time under particular meteorological conditions. In this study, the accuracy of atmospheric dispersion simulations has been tested using a natural system of CO2 emission to atmosphere from underground in an area called Solforata di Pomezia, near the city of Rome in central Italy. This area is located in the Alban Hills, which underwent volcanic activity during the Quaternary, and is characterised by low permeability volcanic and sedimentary formations that allow the accumulation of gas at shallow depths and below surface. This site has been long investigated in terms of soil CO2 emission rates, which range from 44 to 95 ton∙day-1. Using the TWODEE2 numerical code, a number of simulations were performed considering a set of combined CO2 soil flux emission and meteorological (wind, temperature) from literature. The results fit well in the range of measured CO2 concentration in air at distinct heights in the site. The model does not predict lethal gas concentration at heights 1 and 2 m above the ground based on actual soil emission rate (95 ton∙day-1). Two probabilistic models were developed with emission rate five (500 ton∙day-1) and ten (1000 ton∙day-1 times bigger than nowadays but still no hazardous levels were predicted. Published S0550 6A. Geochimica per l'ambiente JCR Journal Article in Journal/Newspaper Arctic Earth-Prints (Istituto Nazionale di Geofisica e Vulcanologia) Annals of Geophysics 60 5