A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves

There is a need for computational models capable of predicting meltwater-assisted crevasse growth in glacial ice. Mass loss from glaciers and ice sheets is the largest contributor to sea-level rise and iceberg calving due to hydrofracture is one of the most prominent yet less understood glacial mass...

Full description

Bibliographic Details
Published in:Engineering Fracture Mechanics
Main Authors: Clayton, T, Duddu, R, Siegert, M, Martínez-Pañeda, E
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier BV 2022
Subjects:
Online Access:http://hdl.handle.net/10044/1/99178
https://doi.org/10.1016/j.engfracmech.2022.108693
id ftimperialcol:oai:spiral.imperial.ac.uk:10044/1/99178
record_format openpolar
spelling ftimperialcol:oai:spiral.imperial.ac.uk:10044/1/99178 2023-05-15T16:41:58+02:00 A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves Clayton, T Duddu, R Siegert, M Martínez-Pañeda, E 2022-07-31 http://hdl.handle.net/10044/1/99178 https://doi.org/10.1016/j.engfracmech.2022.108693 en eng Elsevier BV Engineering Fracture Mechanics 0013-7944 http://hdl.handle.net/10044/1/99178 doi:10.1016/j.engfracmech.2022.108693 © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). http://creativecommons.org/licenses/by/4.0/ CC-BY 24 1 Mechanical Engineering & Transports Journal Article 2022 ftimperialcol https://doi.org/10.1016/j.engfracmech.2022.108693 2022-08-25T22:41:34Z There is a need for computational models capable of predicting meltwater-assisted crevasse growth in glacial ice. Mass loss from glaciers and ice sheets is the largest contributor to sea-level rise and iceberg calving due to hydrofracture is one of the most prominent yet less understood glacial mass loss processes. To overcome the limitations of empirical and analytical approaches, we here propose a new phase field-based computational framework to simulate crevasse growth in both grounded ice sheets and floating ice shelves. The model incorporates the three elements needed to mechanistically simulate hydrofracture of surface and basal crevasses: (i) a constitutive description incorporating the non-linear viscous rheology of ice, (ii) a phase field formulation capable of capturing cracking phenomena of arbitrary complexity, such as 3D crevasse interaction, and (iii) a poro-damage representation to account for the role of meltwater pressure on crevasse growth. A stress-based phase field model is adopted to reduce the length-scale sensitivity, as needed to tackle the large scales of iceberg calving, and to adequately predict crevasse growth in tensile stress regions of incompressible solids. The potential of the computational framework presented is demonstrated by addressing a number of 2D and 3D case studies, involving single and multiple crevasses, and considering both grounded and floating conditions. The model results show a good agreement with analytical approaches when particularised to the idealised scenarios where these are relevant. More importantly, we demonstrate how the model can be used to provide the first computational predictions of crevasse interactions in floating ice shelves and 3D ice sheets, shedding new light into these phenomena. Also, the creep-assisted nucleation and growth of crevasses is simulated in a realistic geometry, corresponding to the Helheim glacier. The computational framework presented opens new horizons in the modelling of iceberg calving and, due to its ability to incorporate ... Article in Journal/Newspaper Ice Shelves Imperial College London: Spiral Engineering Fracture Mechanics 272 108693
institution Open Polar
collection Imperial College London: Spiral
op_collection_id ftimperialcol
language English
topic Mechanical Engineering & Transports
spellingShingle Mechanical Engineering & Transports
Clayton, T
Duddu, R
Siegert, M
Martínez-Pañeda, E
A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves
topic_facet Mechanical Engineering & Transports
description There is a need for computational models capable of predicting meltwater-assisted crevasse growth in glacial ice. Mass loss from glaciers and ice sheets is the largest contributor to sea-level rise and iceberg calving due to hydrofracture is one of the most prominent yet less understood glacial mass loss processes. To overcome the limitations of empirical and analytical approaches, we here propose a new phase field-based computational framework to simulate crevasse growth in both grounded ice sheets and floating ice shelves. The model incorporates the three elements needed to mechanistically simulate hydrofracture of surface and basal crevasses: (i) a constitutive description incorporating the non-linear viscous rheology of ice, (ii) a phase field formulation capable of capturing cracking phenomena of arbitrary complexity, such as 3D crevasse interaction, and (iii) a poro-damage representation to account for the role of meltwater pressure on crevasse growth. A stress-based phase field model is adopted to reduce the length-scale sensitivity, as needed to tackle the large scales of iceberg calving, and to adequately predict crevasse growth in tensile stress regions of incompressible solids. The potential of the computational framework presented is demonstrated by addressing a number of 2D and 3D case studies, involving single and multiple crevasses, and considering both grounded and floating conditions. The model results show a good agreement with analytical approaches when particularised to the idealised scenarios where these are relevant. More importantly, we demonstrate how the model can be used to provide the first computational predictions of crevasse interactions in floating ice shelves and 3D ice sheets, shedding new light into these phenomena. Also, the creep-assisted nucleation and growth of crevasses is simulated in a realistic geometry, corresponding to the Helheim glacier. The computational framework presented opens new horizons in the modelling of iceberg calving and, due to its ability to incorporate ...
format Article in Journal/Newspaper
author Clayton, T
Duddu, R
Siegert, M
Martínez-Pañeda, E
author_facet Clayton, T
Duddu, R
Siegert, M
Martínez-Pañeda, E
author_sort Clayton, T
title A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves
title_short A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves
title_full A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves
title_fullStr A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves
title_full_unstemmed A stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves
title_sort stress-based poro-damage phase field model for hydrofracturing of creeping glaciers and ice shelves
publisher Elsevier BV
publishDate 2022
url http://hdl.handle.net/10044/1/99178
https://doi.org/10.1016/j.engfracmech.2022.108693
genre Ice Shelves
genre_facet Ice Shelves
op_source 24
1
op_relation Engineering Fracture Mechanics
0013-7944
http://hdl.handle.net/10044/1/99178
doi:10.1016/j.engfracmech.2022.108693
op_rights © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
http://creativecommons.org/licenses/by/4.0/
op_rightsnorm CC-BY
op_doi https://doi.org/10.1016/j.engfracmech.2022.108693
container_title Engineering Fracture Mechanics
container_volume 272
container_start_page 108693
_version_ 1766032436866580480