WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia

Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly r...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Bohn, TJ, Melton, JR, Ito, A, Kleinen, T, Spahni, R, Stocker, BD, Zhang, B, Zhu, X, Schroeder, R, Glagolev, MV, Maksyutov, S, Brovkin, V, Chen, G, Denisov, SN, Eliseev, AV, Gallego-Sala, A, McDonald, KC, Rawlins, MA, Riley, WJ, Subin, ZM, Tian, H, Zhuang, Q, Kaplan, JO
Format: Article in Journal/Newspaper
Language:unknown
Published: European Geosciences Union 2015
Subjects:
Online Access:http://hdl.handle.net/10044/1/40635
https://doi.org/10.5194/bg-12-3321-2015
id ftimperialcol:oai:spiral.imperial.ac.uk:10044/1/40635
record_format openpolar
spelling ftimperialcol:oai:spiral.imperial.ac.uk:10044/1/40635 2023-05-15T17:57:49+02:00 WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia Bohn, TJ Melton, JR Ito, A Kleinen, T Spahni, R Stocker, BD Zhang, B Zhu, X Schroeder, R Glagolev, MV Maksyutov, S Brovkin, V Chen, G Denisov, SN Eliseev, AV Gallego-Sala, A McDonald, KC Rawlins, MA Riley, WJ Subin, ZM Tian, H Zhuang, Q Kaplan, JO 2015-04-30 http://hdl.handle.net/10044/1/40635 https://doi.org/10.5194/bg-12-3321-2015 unknown European Geosciences Union Biogeosciences © Author(s) 2015. This work is distributed under the Creative Commons Attribution 3.0 License. CC-BY 3349 3321 Science & Technology Life Sciences & Biomedicine Physical Sciences Ecology Geosciences Multidisciplinary Environmental Sciences & Ecology Geology NORTHERN HIGH-LATITUDES TERRESTRIAL ECOSYSTEMS BIOGEOCHEMISTRY MODEL ATMOSPHERIC METHANE PERMAFROST CARBON CLIMATE-CHANGE NATURAL WETLANDS WINTER FLUXES CH4 EMISSIONS EARTH SYSTEM Meteorology & Atmospheric Sciences 04 Earth Sciences 05 Environmental Sciences 06 Biological Sciences Journal Article 2015 ftimperialcol https://doi.org/10.5194/bg-12-3321-2015 2018-09-16T05:57:02Z Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr−1), inversions (6.06 ± 1.22 Tg CH4 yr−1), and in situ observations (3.91 ± 1.29 Tg CH4 yr−1) largely agreed; (b) forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver (inundation or air temperature), unlike those of inversions and more sophisticated forward models; (d) differences in biogeochemical schemes across models had relatively smaller influence over performance; and (e) multiyear or multidecade observational records are crucial for evaluating models' responses to long-term climate change. Article in Journal/Newspaper permafrost Siberia Imperial College London: Spiral Biogeosciences 12 11 3321 3349
institution Open Polar
collection Imperial College London: Spiral
op_collection_id ftimperialcol
language unknown
topic Science & Technology
Life Sciences & Biomedicine
Physical Sciences
Ecology
Geosciences
Multidisciplinary
Environmental Sciences & Ecology
Geology
NORTHERN HIGH-LATITUDES
TERRESTRIAL ECOSYSTEMS
BIOGEOCHEMISTRY MODEL
ATMOSPHERIC METHANE
PERMAFROST CARBON
CLIMATE-CHANGE
NATURAL WETLANDS
WINTER FLUXES
CH4 EMISSIONS
EARTH SYSTEM
Meteorology & Atmospheric Sciences
04 Earth Sciences
05 Environmental Sciences
06 Biological Sciences
spellingShingle Science & Technology
Life Sciences & Biomedicine
Physical Sciences
Ecology
Geosciences
Multidisciplinary
Environmental Sciences & Ecology
Geology
NORTHERN HIGH-LATITUDES
TERRESTRIAL ECOSYSTEMS
BIOGEOCHEMISTRY MODEL
ATMOSPHERIC METHANE
PERMAFROST CARBON
CLIMATE-CHANGE
NATURAL WETLANDS
WINTER FLUXES
CH4 EMISSIONS
EARTH SYSTEM
Meteorology & Atmospheric Sciences
04 Earth Sciences
05 Environmental Sciences
06 Biological Sciences
Bohn, TJ
Melton, JR
Ito, A
Kleinen, T
Spahni, R
Stocker, BD
Zhang, B
Zhu, X
Schroeder, R
Glagolev, MV
Maksyutov, S
Brovkin, V
Chen, G
Denisov, SN
Eliseev, AV
Gallego-Sala, A
McDonald, KC
Rawlins, MA
Riley, WJ
Subin, ZM
Tian, H
Zhuang, Q
Kaplan, JO
WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia
topic_facet Science & Technology
Life Sciences & Biomedicine
Physical Sciences
Ecology
Geosciences
Multidisciplinary
Environmental Sciences & Ecology
Geology
NORTHERN HIGH-LATITUDES
TERRESTRIAL ECOSYSTEMS
BIOGEOCHEMISTRY MODEL
ATMOSPHERIC METHANE
PERMAFROST CARBON
CLIMATE-CHANGE
NATURAL WETLANDS
WINTER FLUXES
CH4 EMISSIONS
EARTH SYSTEM
Meteorology & Atmospheric Sciences
04 Earth Sciences
05 Environmental Sciences
06 Biological Sciences
description Wetlands are the world's largest natural source of methane, a powerful greenhouse gas. The strong sensitivity of methane emissions to environmental factors such as soil temperature and moisture has led to concerns about potential positive feedbacks to climate change. This risk is particularly relevant at high latitudes, which have experienced pronounced warming and where thawing permafrost could potentially liberate large amounts of labile carbon over the next 100 years. However, global models disagree as to the magnitude and spatial distribution of emissions, due to uncertainties in wetland area and emissions per unit area and a scarcity of in situ observations. Recent intensive field campaigns across the West Siberian Lowland (WSL) make this an ideal region over which to assess the performance of large-scale process-based wetland models in a high-latitude environment. Here we present the results of a follow-up to the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP), focused on the West Siberian Lowland (WETCHIMP-WSL). We assessed 21 models and 5 inversions over this domain in terms of total CH4 emissions, simulated wetland areas, and CH4 fluxes per unit wetland area and compared these results to an intensive in situ CH4 flux data set, several wetland maps, and two satellite surface water products. We found that (a) despite the large scatter of individual estimates, 12-year mean estimates of annual total emissions over the WSL from forward models (5.34 ± 0.54 Tg CH4 yr−1), inversions (6.06 ± 1.22 Tg CH4 yr−1), and in situ observations (3.91 ± 1.29 Tg CH4 yr−1) largely agreed; (b) forward models using surface water products alone to estimate wetland areas suffered from severe biases in CH4 emissions; (c) the interannual time series of models that lacked either soil thermal physics appropriate to the high latitudes or realistic emissions from unsaturated peatlands tended to be dominated by a single environmental driver (inundation or air temperature), unlike those of inversions and more sophisticated forward models; (d) differences in biogeochemical schemes across models had relatively smaller influence over performance; and (e) multiyear or multidecade observational records are crucial for evaluating models' responses to long-term climate change.
format Article in Journal/Newspaper
author Bohn, TJ
Melton, JR
Ito, A
Kleinen, T
Spahni, R
Stocker, BD
Zhang, B
Zhu, X
Schroeder, R
Glagolev, MV
Maksyutov, S
Brovkin, V
Chen, G
Denisov, SN
Eliseev, AV
Gallego-Sala, A
McDonald, KC
Rawlins, MA
Riley, WJ
Subin, ZM
Tian, H
Zhuang, Q
Kaplan, JO
author_facet Bohn, TJ
Melton, JR
Ito, A
Kleinen, T
Spahni, R
Stocker, BD
Zhang, B
Zhu, X
Schroeder, R
Glagolev, MV
Maksyutov, S
Brovkin, V
Chen, G
Denisov, SN
Eliseev, AV
Gallego-Sala, A
McDonald, KC
Rawlins, MA
Riley, WJ
Subin, ZM
Tian, H
Zhuang, Q
Kaplan, JO
author_sort Bohn, TJ
title WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia
title_short WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia
title_full WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia
title_fullStr WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia
title_full_unstemmed WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia
title_sort wetchimp-wsl: intercomparison of wetland methane emissions models over west siberia
publisher European Geosciences Union
publishDate 2015
url http://hdl.handle.net/10044/1/40635
https://doi.org/10.5194/bg-12-3321-2015
genre permafrost
Siberia
genre_facet permafrost
Siberia
op_source 3349
3321
op_relation Biogeosciences
op_rights © Author(s) 2015. This work is distributed under the Creative Commons Attribution 3.0 License.
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/bg-12-3321-2015
container_title Biogeosciences
container_volume 12
container_issue 11
container_start_page 3321
op_container_end_page 3349
_version_ 1766166314457497600