Decline of a distinct coral reef holobiont community under ocean acidification

Background: Microbes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowl...

Full description

Bibliographic Details
Main Authors: Williams, J, Pettorelli, N, Hartmann, A, Quinn, R, Plaisance, L, O’Mahoney, M, Meyer, C, Fabricius, K, Knowlton, N, Ransome, E
Format: Article in Journal/Newspaper
Language:unknown
Published: BMC 2023
Subjects:
Online Access:http://hdl.handle.net/10044/1/107979
id ftimperialcol:oai:spiral.imperial.ac.uk:10044/1/107979
record_format openpolar
spelling ftimperialcol:oai:spiral.imperial.ac.uk:10044/1/107979 2023-12-31T10:21:33+01:00 Decline of a distinct coral reef holobiont community under ocean acidification Williams, J Pettorelli, N Hartmann, A Quinn, R Plaisance, L O’Mahoney, M Meyer, C Fabricius, K Knowlton, N Ransome, E 2023-10-05 http://hdl.handle.net/10044/1/107979 unknown BMC Microbiome 2049-2618 http://hdl.handle.net/10044/1/107979 This paper is embargoed until publication. Once published the Version of Record (VoR) will be available on immediate open access. 10000-01-01 Journal Article 2023 ftimperialcol 2023-12-07T23:43:22Z Background: Microbes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH - an important global coral reef stressor - can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA) known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome. Results: We test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2 seeps in Papua New Guinea. We find support for our hypothesis: under OA the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonized by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation. Conclusions: We demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings provide evidence that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, ... Article in Journal/Newspaper Ocean acidification Imperial College London: Spiral
institution Open Polar
collection Imperial College London: Spiral
op_collection_id ftimperialcol
language unknown
description Background: Microbes play vital roles across coral reefs both in the environment and inside and upon macrobes (holobionts), where they support critical functions such as nutrition and immune system modulation. These roles highlight the potential ecosystem-level importance of microbes, yet most knowledge of microbial functions on reefs is derived from a small set of holobionts such as corals and sponges. Declining seawater pH - an important global coral reef stressor - can cause ecosystem-level change on coral reefs, providing an opportunity to study the role of microbes at this scale. We use an in situ experimental approach to test the hypothesis that under such ocean acidification (OA) known shifts among macrobe trophic and functional groups may drive a general ecosystem-level response extending across macrobes and microbes, leading to reduced distinctness between the benthic holobiont community microbiome and the environmental microbiome. Results: We test this hypothesis using genetic and chemical data from benthic coral reef community holobionts sampled across a pH gradient from CO2 seeps in Papua New Guinea. We find support for our hypothesis: under OA the microbiome and metabolome of the benthic holobiont community become less compositionally distinct from the sediment microbiome and metabolome, suggesting that benthic macrobe communities are colonized by environmental microbes to a higher degree under OA conditions. We also find a simplification and homogenisation of the benthic photosynthetic community, and an increased abundance of fleshy macroalgae, consistent with previously observed reef microbialisation. Conclusions: We demonstrate a novel structural shift in coral reefs involving macrobes and microbes: that the microbiome of the benthic holobiont community becomes less distinct from the sediment microbiome under OA. Our findings provide evidence that microbialisation and the disruption of macrobe trophic networks are interwoven general responses to environmental stress, pointing towards a universal, ...
format Article in Journal/Newspaper
author Williams, J
Pettorelli, N
Hartmann, A
Quinn, R
Plaisance, L
O’Mahoney, M
Meyer, C
Fabricius, K
Knowlton, N
Ransome, E
spellingShingle Williams, J
Pettorelli, N
Hartmann, A
Quinn, R
Plaisance, L
O’Mahoney, M
Meyer, C
Fabricius, K
Knowlton, N
Ransome, E
Decline of a distinct coral reef holobiont community under ocean acidification
author_facet Williams, J
Pettorelli, N
Hartmann, A
Quinn, R
Plaisance, L
O’Mahoney, M
Meyer, C
Fabricius, K
Knowlton, N
Ransome, E
author_sort Williams, J
title Decline of a distinct coral reef holobiont community under ocean acidification
title_short Decline of a distinct coral reef holobiont community under ocean acidification
title_full Decline of a distinct coral reef holobiont community under ocean acidification
title_fullStr Decline of a distinct coral reef holobiont community under ocean acidification
title_full_unstemmed Decline of a distinct coral reef holobiont community under ocean acidification
title_sort decline of a distinct coral reef holobiont community under ocean acidification
publisher BMC
publishDate 2023
url http://hdl.handle.net/10044/1/107979
genre Ocean acidification
genre_facet Ocean acidification
op_relation Microbiome
2049-2618
http://hdl.handle.net/10044/1/107979
op_rights This paper is embargoed until publication. Once published the Version of Record (VoR) will be available on immediate open access.
10000-01-01
_version_ 1786832373490384896