Mapping trait versus species turnover reveals spatiotemporal variation in functional redundancy and network robustness in a plant-pollinator community

Functional overlap among species (redundancy) is considered important in shaping competitive and mutualistic interactions that determine how communities respond to environmental change. Most studies view functional redundancy as static, yet traits within species—which ultimately shape functional red...

Full description

Bibliographic Details
Published in:Functional Ecology
Main Authors: Cantwell-Jones, A, Larson, K, Ward, A, Bates, OK, Cox, T, Gibbons, C, Richardson, R, Al-Hayali, AMR, Svedin, J, Aronsson, M, Brannlund, F, Tylianakis, JM, Johansson, J, Gill, RJ
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley 2022
Subjects:
Online Access:http://hdl.handle.net/10044/1/102137
https://doi.org/10.1111/1365-2435.14253
id ftimperialcol:oai:spiral.imperial.ac.uk:10044/1/102137
record_format openpolar
spelling ftimperialcol:oai:spiral.imperial.ac.uk:10044/1/102137 2023-05-15T15:15:18+02:00 Mapping trait versus species turnover reveals spatiotemporal variation in functional redundancy and network robustness in a plant-pollinator community Cantwell-Jones, A Larson, K Ward, A Bates, OK Cox, T Gibbons, C Richardson, R Al-Hayali, AMR Svedin, J Aronsson, M Brannlund, F Tylianakis, JM Johansson, J Gill, RJ 2022-12-06 http://hdl.handle.net/10044/1/102137 https://doi.org/10.1111/1365-2435.14253 unknown Wiley Functional Ecology 0269-8463 http://hdl.handle.net/10044/1/102137 doi:10.1111/1365-2435.14253 © 2022 The Authors. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. https://creativecommons.org/licenses/by-nc/4.0/ CC-BY-NC 762 748 Journal Article 2022 ftimperialcol https://doi.org/10.1111/1365-2435.14253 2023-03-09T23:42:57Z Functional overlap among species (redundancy) is considered important in shaping competitive and mutualistic interactions that determine how communities respond to environmental change. Most studies view functional redundancy as static, yet traits within species—which ultimately shape functional redundancy—can vary over seasonal or spatial gradients. We therefore have limited understanding of how trait turnover within and between species could lead to changes in functional redundancy or how loss of traits could differentially impact mutualistic interactions depending on where and when the interactions occur in space and time. Using an Arctic bumblebee community as a case study, and 1277 individual measures from 14 species over three annual seasons, we quantified how inter- and intraspecific body-size turnover compared to species turnover with elevation and over the season. Coupling every individual and their trait with a plant visitation, we investigated how grouping individuals by a morphological trait or by species identity altered our assessment of network structure and how this differed in space and time. Finally, we tested how the sensitivity of the network in space and time differed when simulating extinction of nodes representing either morphological trait similarity or traditional species groups. This allowed us to explore the degree to which trait-based groups increase or decrease interaction redundancy relative to species-based nodes. We found that (i) groups of taxonomically and morphologically similar bees turn over in space and time independently from each other, with trait turnover being larger over the season; (ii) networks composed of nodes representing species versus morphologically similar bees were structured differently; and (iii) simulated loss of bee trait groups caused faster coextinction of bumblebee species and flowering plants than when bee taxonomic groups were lost. Crucially, the magnitude of these effects varied in space and time, highlighting the importance of considering ... Article in Journal/Newspaper Arctic Imperial College London: Spiral Arctic Functional Ecology 37 3 748 762
institution Open Polar
collection Imperial College London: Spiral
op_collection_id ftimperialcol
language unknown
description Functional overlap among species (redundancy) is considered important in shaping competitive and mutualistic interactions that determine how communities respond to environmental change. Most studies view functional redundancy as static, yet traits within species—which ultimately shape functional redundancy—can vary over seasonal or spatial gradients. We therefore have limited understanding of how trait turnover within and between species could lead to changes in functional redundancy or how loss of traits could differentially impact mutualistic interactions depending on where and when the interactions occur in space and time. Using an Arctic bumblebee community as a case study, and 1277 individual measures from 14 species over three annual seasons, we quantified how inter- and intraspecific body-size turnover compared to species turnover with elevation and over the season. Coupling every individual and their trait with a plant visitation, we investigated how grouping individuals by a morphological trait or by species identity altered our assessment of network structure and how this differed in space and time. Finally, we tested how the sensitivity of the network in space and time differed when simulating extinction of nodes representing either morphological trait similarity or traditional species groups. This allowed us to explore the degree to which trait-based groups increase or decrease interaction redundancy relative to species-based nodes. We found that (i) groups of taxonomically and morphologically similar bees turn over in space and time independently from each other, with trait turnover being larger over the season; (ii) networks composed of nodes representing species versus morphologically similar bees were structured differently; and (iii) simulated loss of bee trait groups caused faster coextinction of bumblebee species and flowering plants than when bee taxonomic groups were lost. Crucially, the magnitude of these effects varied in space and time, highlighting the importance of considering ...
format Article in Journal/Newspaper
author Cantwell-Jones, A
Larson, K
Ward, A
Bates, OK
Cox, T
Gibbons, C
Richardson, R
Al-Hayali, AMR
Svedin, J
Aronsson, M
Brannlund, F
Tylianakis, JM
Johansson, J
Gill, RJ
spellingShingle Cantwell-Jones, A
Larson, K
Ward, A
Bates, OK
Cox, T
Gibbons, C
Richardson, R
Al-Hayali, AMR
Svedin, J
Aronsson, M
Brannlund, F
Tylianakis, JM
Johansson, J
Gill, RJ
Mapping trait versus species turnover reveals spatiotemporal variation in functional redundancy and network robustness in a plant-pollinator community
author_facet Cantwell-Jones, A
Larson, K
Ward, A
Bates, OK
Cox, T
Gibbons, C
Richardson, R
Al-Hayali, AMR
Svedin, J
Aronsson, M
Brannlund, F
Tylianakis, JM
Johansson, J
Gill, RJ
author_sort Cantwell-Jones, A
title Mapping trait versus species turnover reveals spatiotemporal variation in functional redundancy and network robustness in a plant-pollinator community
title_short Mapping trait versus species turnover reveals spatiotemporal variation in functional redundancy and network robustness in a plant-pollinator community
title_full Mapping trait versus species turnover reveals spatiotemporal variation in functional redundancy and network robustness in a plant-pollinator community
title_fullStr Mapping trait versus species turnover reveals spatiotemporal variation in functional redundancy and network robustness in a plant-pollinator community
title_full_unstemmed Mapping trait versus species turnover reveals spatiotemporal variation in functional redundancy and network robustness in a plant-pollinator community
title_sort mapping trait versus species turnover reveals spatiotemporal variation in functional redundancy and network robustness in a plant-pollinator community
publisher Wiley
publishDate 2022
url http://hdl.handle.net/10044/1/102137
https://doi.org/10.1111/1365-2435.14253
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_source 762
748
op_relation Functional Ecology
0269-8463
http://hdl.handle.net/10044/1/102137
doi:10.1111/1365-2435.14253
op_rights © 2022 The Authors. Functional Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
https://creativecommons.org/licenses/by-nc/4.0/
op_rightsnorm CC-BY-NC
op_doi https://doi.org/10.1111/1365-2435.14253
container_title Functional Ecology
container_volume 37
container_issue 3
container_start_page 748
op_container_end_page 762
_version_ 1766345658758856704