Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming

As global temperatures continue to rise, a key uncertainty of climate projections is the microbial decomposition of vast organic carbon stocks in thawing permafrost soils. Decomposition rates can accelerate up to fourfold in the presence of plant roots, and this mechanism—termed the rhizosphere prim...

Full description

Bibliographic Details
Published in:Nature Geoscience
Main Authors: Keuper, F., Wild, B., Kummu, M., Beer, C., Blume-Werry, G., Fontaine, S., Gavazov, K., Gentsch, N., Guggenberger, G., Hugelius, G., Jalava, M., Koven, C., Krab, E.J., Kuhry, P., Monteux, S., Richter, A., Shahzad, T., Weedon, J.T., Dorrepaal, E.
Format: Article in Journal/Newspaper
Language:unknown
Published: NPG 2020
Subjects:
Online Access:https://pure.iiasa.ac.at/id/eprint/16595/
https://doi.org/10.1038/s41561-020-0607-0
id ftiiasalaxenburg:oai:pure.iiasa.ac.at:16595
record_format openpolar
spelling ftiiasalaxenburg:oai:pure.iiasa.ac.at:16595 2023-05-15T15:05:46+02:00 Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming Keuper, F. Wild, B. Kummu, M. Beer, C. Blume-Werry, G. Fontaine, S. Gavazov, K. Gentsch, N. Guggenberger, G. Hugelius, G. Jalava, M. Koven, C. Krab, E.J. Kuhry, P. Monteux, S. Richter, A. Shahzad, T. Weedon, J.T. Dorrepaal, E. 2020-07-20 https://pure.iiasa.ac.at/id/eprint/16595/ https://doi.org/10.1038/s41561-020-0607-0 unknown NPG Keuper, F., Wild, B., Kummu, M., Beer, C., Blume-Werry, G., Fontaine, S., Gavazov, K., Gentsch, N., et al. (2020). Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nature Geoscience 13 560-565. 10.1038/s41561-020-0607-0 <https://doi.org/10.1038/s41561-020-0607-0>. doi:10.1038/s41561-020-0607-0 Article PeerReviewed 2020 ftiiasalaxenburg https://doi.org/10.1038/s41561-020-0607-0 2023-04-07T14:54:11Z As global temperatures continue to rise, a key uncertainty of climate projections is the microbial decomposition of vast organic carbon stocks in thawing permafrost soils. Decomposition rates can accelerate up to fourfold in the presence of plant roots, and this mechanism—termed the rhizosphere priming effect—may be especially relevant to thawing permafrost soils as rising temperatures also stimulate plant productivity in the Arctic. However, priming is currently not explicitly included in any model projections of future carbon losses from the permafrost area. Here, we combine high-resolution spatial and depth-resolved datasets of key plant and permafrost properties with empirical relationships of priming effects from living plants on microbial respiration. We show that rhizosphere priming amplifies overall soil respiration in permafrost-affected ecosystems by ~12%, which translates to a priming-induced absolute loss of ~40 Pg soil carbon from the northern permafrost area by 2100. Our findings highlight the need to include fine-scale ecological interactions in order to accurately predict large-scale greenhouse gas emissions, and suggest even tighter restrictions on the estimated 200 Pg anthropogenic carbon emission budget to keep global warming below 1.5 °C. Article in Journal/Newspaper Arctic Global warming permafrost IIASA PURE (International Institute of Applied Systems Analysis: PUblications REpository) Arctic Nature Geoscience 13 8 560 565
institution Open Polar
collection IIASA PURE (International Institute of Applied Systems Analysis: PUblications REpository)
op_collection_id ftiiasalaxenburg
language unknown
description As global temperatures continue to rise, a key uncertainty of climate projections is the microbial decomposition of vast organic carbon stocks in thawing permafrost soils. Decomposition rates can accelerate up to fourfold in the presence of plant roots, and this mechanism—termed the rhizosphere priming effect—may be especially relevant to thawing permafrost soils as rising temperatures also stimulate plant productivity in the Arctic. However, priming is currently not explicitly included in any model projections of future carbon losses from the permafrost area. Here, we combine high-resolution spatial and depth-resolved datasets of key plant and permafrost properties with empirical relationships of priming effects from living plants on microbial respiration. We show that rhizosphere priming amplifies overall soil respiration in permafrost-affected ecosystems by ~12%, which translates to a priming-induced absolute loss of ~40 Pg soil carbon from the northern permafrost area by 2100. Our findings highlight the need to include fine-scale ecological interactions in order to accurately predict large-scale greenhouse gas emissions, and suggest even tighter restrictions on the estimated 200 Pg anthropogenic carbon emission budget to keep global warming below 1.5 °C.
format Article in Journal/Newspaper
author Keuper, F.
Wild, B.
Kummu, M.
Beer, C.
Blume-Werry, G.
Fontaine, S.
Gavazov, K.
Gentsch, N.
Guggenberger, G.
Hugelius, G.
Jalava, M.
Koven, C.
Krab, E.J.
Kuhry, P.
Monteux, S.
Richter, A.
Shahzad, T.
Weedon, J.T.
Dorrepaal, E.
spellingShingle Keuper, F.
Wild, B.
Kummu, M.
Beer, C.
Blume-Werry, G.
Fontaine, S.
Gavazov, K.
Gentsch, N.
Guggenberger, G.
Hugelius, G.
Jalava, M.
Koven, C.
Krab, E.J.
Kuhry, P.
Monteux, S.
Richter, A.
Shahzad, T.
Weedon, J.T.
Dorrepaal, E.
Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
author_facet Keuper, F.
Wild, B.
Kummu, M.
Beer, C.
Blume-Werry, G.
Fontaine, S.
Gavazov, K.
Gentsch, N.
Guggenberger, G.
Hugelius, G.
Jalava, M.
Koven, C.
Krab, E.J.
Kuhry, P.
Monteux, S.
Richter, A.
Shahzad, T.
Weedon, J.T.
Dorrepaal, E.
author_sort Keuper, F.
title Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
title_short Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
title_full Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
title_fullStr Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
title_full_unstemmed Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
title_sort carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
publisher NPG
publishDate 2020
url https://pure.iiasa.ac.at/id/eprint/16595/
https://doi.org/10.1038/s41561-020-0607-0
geographic Arctic
geographic_facet Arctic
genre Arctic
Global warming
permafrost
genre_facet Arctic
Global warming
permafrost
op_relation Keuper, F., Wild, B., Kummu, M., Beer, C., Blume-Werry, G., Fontaine, S., Gavazov, K., Gentsch, N., et al. (2020). Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nature Geoscience 13 560-565. 10.1038/s41561-020-0607-0 <https://doi.org/10.1038/s41561-020-0607-0>.
doi:10.1038/s41561-020-0607-0
op_doi https://doi.org/10.1038/s41561-020-0607-0
container_title Nature Geoscience
container_volume 13
container_issue 8
container_start_page 560
op_container_end_page 565
_version_ 1766337414687621120