Predicting Water Permeability of the Soil Based on Open Data

Part 10: Environmental AI International audience Water permeability is a key concept when estimating load bearing capacity, mobility and infrastructure potential of a terrain. Northern sub-arctic areas have rather similar dominant soil types and thus prediction methods successful at Northern Finland...

Full description

Bibliographic Details
Main Authors: Pohjankukka, Jonne, Nevalainen, Paavo, Pahikkala, Tapio, Hyvönen, Eija, Hänninen, Pekka, Sutinen, Raimo, Ala-Ilomäki, Jari, Heikkonen, Jukka
Other Authors: University of Turku, Lazaros Iliadis, Ilias Maglogiannis, Harris Papadopoulos, TC 12, WG 12.5
Format: Conference Object
Language:English
Published: HAL CCSD 2014
Subjects:
Online Access:https://hal.inria.fr/hal-01391345
https://hal.inria.fr/hal-01391345/document
https://hal.inria.fr/hal-01391345/file/978-3-662-44654-6_43_Chapter.pdf
https://doi.org/10.1007/978-3-662-44654-6_43
_version_ 1821813376580321280
author Pohjankukka, Jonne
Nevalainen, Paavo
Pahikkala, Tapio
Hyvönen, Eija
Hänninen, Pekka
Sutinen, Raimo
Ala-Ilomäki, Jari
Heikkonen, Jukka
author2 University of Turku
Lazaros Iliadis
Ilias Maglogiannis
Harris Papadopoulos
TC 12
WG 12.5
author_facet Pohjankukka, Jonne
Nevalainen, Paavo
Pahikkala, Tapio
Hyvönen, Eija
Hänninen, Pekka
Sutinen, Raimo
Ala-Ilomäki, Jari
Heikkonen, Jukka
author_sort Pohjankukka, Jonne
collection IFIP Open Digital Library (International Federation for Information Processing)
container_start_page 436
description Part 10: Environmental AI International audience Water permeability is a key concept when estimating load bearing capacity, mobility and infrastructure potential of a terrain. Northern sub-arctic areas have rather similar dominant soil types and thus prediction methods successful at Northern Finland may generalize to other arctic areas. In this paper we have predicted water permeability using publicly available natural resource data with regression analysis. The data categories used for regression were: airborne electro-magnetic and radiation, topographic height, national forest inventory data, and peat bog thickness. Various additional features were derived from original data to enable better predictions. The regression performances indicate that the prediction capability exists up to 120 meters from the closest direct measurement points. The results were measured using leave-one-out cross-validation with a dead zone between the training and testing data sets.
format Conference Object
genre Arctic
Northern Finland
genre_facet Arctic
Northern Finland
geographic Arctic
geographic_facet Arctic
id ftifiphal:oai:HAL:hal-01391345v1
institution Open Polar
language English
op_collection_id ftifiphal
op_container_end_page 446
op_coverage Rhodes, Greece
op_doi https://doi.org/10.1007/978-3-662-44654-6_43
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-662-44654-6_43
hal-01391345
https://hal.inria.fr/hal-01391345
https://hal.inria.fr/hal-01391345/document
https://hal.inria.fr/hal-01391345/file/978-3-662-44654-6_43_Chapter.pdf
doi:10.1007/978-3-662-44654-6_43
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_source IFIP Advances in Information and Communication Technology
10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI)
https://hal.inria.fr/hal-01391345
10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. pp.436-446, ⟨10.1007/978-3-662-44654-6_43⟩
publishDate 2014
publisher HAL CCSD
record_format openpolar
spelling ftifiphal:oai:HAL:hal-01391345v1 2025-01-16T20:19:14+00:00 Predicting Water Permeability of the Soil Based on Open Data Pohjankukka, Jonne Nevalainen, Paavo Pahikkala, Tapio Hyvönen, Eija Hänninen, Pekka Sutinen, Raimo Ala-Ilomäki, Jari Heikkonen, Jukka University of Turku Lazaros Iliadis Ilias Maglogiannis Harris Papadopoulos TC 12 WG 12.5 Rhodes, Greece 2014-09-19 https://hal.inria.fr/hal-01391345 https://hal.inria.fr/hal-01391345/document https://hal.inria.fr/hal-01391345/file/978-3-662-44654-6_43_Chapter.pdf https://doi.org/10.1007/978-3-662-44654-6_43 en eng HAL CCSD Springer info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-662-44654-6_43 hal-01391345 https://hal.inria.fr/hal-01391345 https://hal.inria.fr/hal-01391345/document https://hal.inria.fr/hal-01391345/file/978-3-662-44654-6_43_Chapter.pdf doi:10.1007/978-3-662-44654-6_43 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess IFIP Advances in Information and Communication Technology 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI) https://hal.inria.fr/hal-01391345 10th IFIP International Conference on Artificial Intelligence Applications and Innovations (AIAI), Sep 2014, Rhodes, Greece. pp.436-446, ⟨10.1007/978-3-662-44654-6_43⟩ load bearing capacity of soil water permeability regression k-nearest neighbor mobility sub-arctic infrastructure [INFO]Computer Science [cs] info:eu-repo/semantics/conferenceObject Conference papers 2014 ftifiphal https://doi.org/10.1007/978-3-662-44654-6_43 2023-03-21T20:54:44Z Part 10: Environmental AI International audience Water permeability is a key concept when estimating load bearing capacity, mobility and infrastructure potential of a terrain. Northern sub-arctic areas have rather similar dominant soil types and thus prediction methods successful at Northern Finland may generalize to other arctic areas. In this paper we have predicted water permeability using publicly available natural resource data with regression analysis. The data categories used for regression were: airborne electro-magnetic and radiation, topographic height, national forest inventory data, and peat bog thickness. Various additional features were derived from original data to enable better predictions. The regression performances indicate that the prediction capability exists up to 120 meters from the closest direct measurement points. The results were measured using leave-one-out cross-validation with a dead zone between the training and testing data sets. Conference Object Arctic Northern Finland IFIP Open Digital Library (International Federation for Information Processing) Arctic 436 446
spellingShingle load bearing capacity of soil
water permeability
regression
k-nearest neighbor
mobility
sub-arctic infrastructure
[INFO]Computer Science [cs]
Pohjankukka, Jonne
Nevalainen, Paavo
Pahikkala, Tapio
Hyvönen, Eija
Hänninen, Pekka
Sutinen, Raimo
Ala-Ilomäki, Jari
Heikkonen, Jukka
Predicting Water Permeability of the Soil Based on Open Data
title Predicting Water Permeability of the Soil Based on Open Data
title_full Predicting Water Permeability of the Soil Based on Open Data
title_fullStr Predicting Water Permeability of the Soil Based on Open Data
title_full_unstemmed Predicting Water Permeability of the Soil Based on Open Data
title_short Predicting Water Permeability of the Soil Based on Open Data
title_sort predicting water permeability of the soil based on open data
topic load bearing capacity of soil
water permeability
regression
k-nearest neighbor
mobility
sub-arctic infrastructure
[INFO]Computer Science [cs]
topic_facet load bearing capacity of soil
water permeability
regression
k-nearest neighbor
mobility
sub-arctic infrastructure
[INFO]Computer Science [cs]
url https://hal.inria.fr/hal-01391345
https://hal.inria.fr/hal-01391345/document
https://hal.inria.fr/hal-01391345/file/978-3-662-44654-6_43_Chapter.pdf
https://doi.org/10.1007/978-3-662-44654-6_43