紫色不含硫光合菌對水中氮源之影響研究

英文摘要 . IV 致謝 . V 目錄 . VI 圖目錄 . XI 表目錄 . XIV 第壹章 緒論 . 1 1.1. 研究動機 . 1 1.2. 研究目的 . 3 第貳章 文獻回顧 . 5 2.1. 前言 . 5 2.2. 光合菌簡介與應用 . 11 2.3. 光合反應的固氮和能量獲得的形式 . 16 2.3.1. 光合反應的固氮方式 . 16 2.3.2. 光合菌的獲能形式 . 17 2.4. 光合菌的營養需求 . 18 2.4.1. 光合菌的碳源 . 18 2.4.2. 光合菌的氮源 . 19 2.5. 影響固氮作用的因素 . 20 2.6. 光合菌除氮功能研究現況 . 21 2.6.1...

Full description

Bibliographic Details
Main Authors: 施宣佑, Shih,Sniuan-You
Format: Thesis
Language:Chinese
English
Published: 2009
Subjects:
6
Online Access:http://ir.hwai.edu.tw:8080/ir/handle/310996100Q/1305
id fthunghwauniv:oai:lib-ir:310996100Q/1305
record_format openpolar
institution Open Polar
collection Chung Hwa University of Medical Technology: Taiwan Academic Institutional Repository (HWAIR)
op_collection_id fthunghwauniv
language Chinese
English
topic 光合菌
銨氮
亞硝酸鹽
紫色不含硫光合菌(Rhodopseudomonas sphaeroides)
Photosynthetic bacteria
Rhodopseudomonas sphaeroides
Ammonium
Nitrous acid
6
spellingShingle 光合菌
銨氮
亞硝酸鹽
紫色不含硫光合菌(Rhodopseudomonas sphaeroides)
Photosynthetic bacteria
Rhodopseudomonas sphaeroides
Ammonium
Nitrous acid
6
施宣佑
Shih,Sniuan-You
紫色不含硫光合菌對水中氮源之影響研究
topic_facet 光合菌
銨氮
亞硝酸鹽
紫色不含硫光合菌(Rhodopseudomonas sphaeroides)
Photosynthetic bacteria
Rhodopseudomonas sphaeroides
Ammonium
Nitrous acid
6
description 英文摘要 . IV 致謝 . V 目錄 . VI 圖目錄 . XI 表目錄 . XIV 第壹章 緒論 . 1 1.1. 研究動機 . 1 1.2. 研究目的 . 3 第貳章 文獻回顧 . 5 2.1. 前言 . 5 2.2. 光合菌簡介與應用 . 11 2.3. 光合反應的固氮和能量獲得的形式 . 16 2.3.1. 光合反應的固氮方式 . 16 2.3.2. 光合菌的獲能形式 . 17 2.4. 光合菌的營養需求 . 18 2.4.1. 光合菌的碳源 . 18 2.4.2. 光合菌的氮源 . 19 2.5. 影響固氮作用的因素 . 20 2.6. 光合菌除氮功能研究現況 . 21 2.6.1. 光合菌之研究現況 . 21 2.6.2. 現今生物性除氮方式 . 23 第參章 實驗材料與分析方法 . 26 3.1. 實驗材料 . 26 3.1.1. 微生物 . 26 3.1.2. 本實驗使用之培養基 . 27 3.1.3. 實驗用藥品 . 28 3.2. 實驗用儀器與設備 . 32 3.2.1. 儀器設備 . 32 3.2.2. 光合菌培養條件和測試儀器 . 32 3.3. 光合菌的培養方法 . 33 3.3.1. 全封閉式厭氣光照培養(厭氣光合菌的培養) . 33 3.3.2. 光合菌菌種保存 . 34 3.3.3. 光合菌解凍生長 . 34 3.4. 分析方法 . 34 3.4.1. 細胞固定化 . 34 3.4.2. 分光光度計測量方法 . 34 3.4.3. 血球計數盤 . 35 3.4.4. 水中銨分析 . 36 3.4.5. 水中亞硝酸鹽(NO2)的分析 . 38 3.4.6. 格蘭氏染色法 . 39 第肆章 實驗設計 . 42 4.1. 預備試驗 . 42 4.1.1 採樣時間與地點 . 42 4.1.2 水樣採集 . 42 4.1.3 水質分析方法 . 42 4.2. 光合菌之培養、定性、定量 . 43 4.2.1 光合菌之收集及吸收波長鑑定 . 43 4.2.2 標準曲線製作 . 44 4.2.3 光合菌培養環境的設計與製作 . 45 4.2.4 光合菌之生長曲線製作 . 46 4.3. 不同濃度的氮源對光合菌之影響 . 48 4.3.1 針對不同銨氮濃度對光合菌之影響 .48 4.3.2 針對不同亞硝酸鹽濃度對光合菌之影響 . 48 4.4. 不同菌量的光合菌對氮源之影響 . 49 4.4.1 針對不同光合菌菌量對銨氮混合溶液影響 . 49 4.4.2 針對不同光合菌菌量對亞硝酸鹽混合溶液影響 . 49 4.5. 應用於養殖池水之模擬試驗 . 50 4.6. 實驗流程 . 54 4.7. 除氮率計算公式 . 55 第伍章 結果與討論 . 56 5.1. 預備試驗 . 56 5.2. 光合菌之培養、定性、定量 .59 5.2.1 R. sphaeroides 吸收光譜 . 59 5.2.2 R. sphaeroides 外型 . 61 5.2.3 光合菌的培養環境 . 62 5.2.4 光合菌之標準曲線製作 . 65 5.2.5 光合菌之生長曲線製作 . 66 5.2.6 銨氮濃度及亞硝酸鹽濃度之標準曲線製作 . 68 5.3. 不同濃度的氮源對光合菌之影響 . 70 5.3.1 針對不同銨氮濃度對光合菌之影響 . 70 5.3.2 針對不同亞硝酸鹽濃度對光合菌之影響 . 72 5.4. 不同菌量的光合菌對氮源之影響 . 74 5.4.1 針對不同光合菌菌量對銨氮溶液影響 . 74 5.4.2 針對不同光合菌菌量對亞硝酸鹽影響 . 77 5.5. 應用於養殖池水之模擬試驗 . 80 5.5.1 養殖池水對光合菌去除銨氮效果影響試驗 . 80 5.5.2 養殖池水對光合菌去除亞硝酸鹽效果影響試驗 . 82 5.5.3 養殖池水中含光合菌及不含光合菌的酸鹼度變化 . 84 第陸章 結論與建議 . 87 6.1. 結論 . 87 6.2. 建議 . 88 第柒章 參考文獻 . 90 圖目錄 圖2-1、全面的疾病防治系統 . 6 圖2-2、氮循環 . 7 圖2-3、養殖池中的共生關係 . 8 圖2-4、益生菌利用周遭產物淨化環境 . 10 圖2- 5、Metabolic processes of R. palustris. . 22 圖2- 6、 Rhodopseudomonas sphaeroides(ESM) . 22 圖2-7、光合菌光合作用 . 23 圖3-1、血球計數盤 .36 圖3-2、格蘭氏染色劑 . 41 圖4-1、對半稀釋法 . 44 圖4-2、光合反應培養系統 . 45 圖4-3、不再添加營養物質密閉空間之微生物生長曲線圖 . 47 圖4-4、實驗室內鰻魚養殖魚缸 . 53 圖4-5、光合菌對氮源影響實驗設計流程圖 . 55 圖5-1、嘉義鰻魚養殖池 . 57 圖5-2、R. sphaeroides 吸收光譜 . 60 圖5-3、使用結晶紫染色R. sphaeroide 放大400 倍 . 61 圖5-4、光合菌反應器 . 63 圖5-5、光合菌反應器內部照度值及溫度比較 . 64 圖5-6、R. sphaeroides 定量標準曲線 . 65 圖5-7、R. sphaeroides 之生長曲線與pH 變化 . 67 圖5-8、R. sphaeroides 接種後培養第一小時 . 67 圖5-9、R. sphaeroides 接種後培養第九十六小時 . 68 圖5-10、銨氮濃度之標準曲線 . 69 圖5-11、亞硝酸鹽濃度之標準曲線 . 69 圖5-12、不同濃度的銨氮對光合菌之影響 . 71 圖5-13、不同濃度的銨氮對光合菌之除氮率比較 . 71 圖5-14、不同濃度的亞硝酸鹽對光合菌之影響 . 73 圖5-15、不同濃度的亞硝酸鹽對光合菌之除氮率比較 .73 圖5-16、不同菌量的光合菌對銨氮溶液影響 . 75 圖5-17、不同菌量的光合菌對銨氮之除氮率比較 . 76 圖5-18、不同菌量的光合菌對亞硝酸鹽影響 . 78 圖5-19、不同菌量的光合菌對亞硝酸鹽之除氮率比較 . 78 圖5-20、不同光合菌菌量對銨氮及亞硝酸鹽影響顏色變化圖 . 79 圖5-21、養殖池水中去除銨氮效果影響試驗 . 81 圖5-22、養殖池水中去除亞硝酸鹽效果影響試驗 . 83 圖5-23、養殖池水中除氮效率 . 83 圖5-24、加入光合菌及沒有加入光合菌溶液的酸鹼度變化 . 86 圖5-25、養殖池水對光合菌除氮效果影響試驗其顏色變化 . 86 表目錄 表2-1、光合菌菌體組成 . 12 表2-2、光合菌B 群維生素組成 . 12 表2-3、具有氫氣之生產能力之厭氧光合菌 . 15 表2-4、光合菌的分類學特徵 . 16 表2-5、在各種培養條件下光合菌的生長及其獲能形式 . 18 表2-6、A comparison of NH4+, NO2- ,DO,BOD, H2S,pH and Temp. . 57 表2-7、A comparison of NH4+, NO2- , PO4, ΣN, ΣP . 58 表2-8、現今生物性除氮歸納 . 25 表3-1、BCRC13100 紫色不含硫菌Rhodopseudomonas sphaeroides. 26 表3-2、Medium 66 . 27 表3-3、紫色不含硫菌的生長的培養配方 . 27 表4-1、各種菌綠素的吸收波長 . 44 表4-2、不同濃度的氮源對光合菌之影響不同銨氮及亞硝酸鹽濃度配置表 51 表4-3、不同菌量的光合菌對氮源之影響不同光合菌菌量配置表 . 52 表4-4、應用於養殖池水之模擬試驗養殖池水之菌量及無機氮配置表. 53 表5-1、A comparison of NH4+, NO2- ,DO,BOD, H2S,pH and Temp.,℃.57 表5-2、A comparison of NH4+, NO2- , PO4, ΣN, ΣP . 58 表5-3、不同濃度的銨氮對光合菌之除氮率比較表 . 71 表5-4、不同濃度的亞硝酸鹽對光合菌之除氮率比較表 . 73 表5-5、不同菌量的光合菌對銨氮之除氮率比較表 . 76 表5-6、不同菌量的光合菌對亞硝酸鹽之除氮率比較表 . 79 表5-7、養殖池水中除氮效率 . 84 表5-8、光合菌於養殖池水中pH 值變化 . 85 參考文獻 Aiking, H. and Sojka, G., 1979. Response of Rhodopseudomonas capsulata to illumination and growth rate in a light-limited continuous culture. J. Bacteriol., 139(1):530-536. Armstong, D.A., 1979. Nitrogen toxicity to crustacea and aspects of its dynamics in culture system. In : D.Lewis and J. Ling (eds.), 2nd Biennial Crustacean Health Workshop. Texas A and M Sea Grant, TAMM-SE-79-114, Texas, pp. 329-360. Austin,B.(1985) Antibiotics pollution from fish farm :effects on aquatic .Microbiol.Sci.,2(4):113-7. Berger's Manual of Systematic Bacteriology, Vol. 1. Williams & Wilkins, Baltimore, MD, 1984, p.545-548. Bovendeur, J., Eding, E.H. and Henken, A.M., 1987. Design and performance of a water recirculative system for high-density culture of the African catfish, Clarias gariepinus. Aquaculture, 63: 329-353. Brunson, M.W., C.G. Lutz and R.M. Durborow. 1994. Algae blooms in commercial fish production farms. Southern Regional Aquaculture Center (SRAC) Publication No. 466. Burrow, R.E., 1964. Effects of accumulated excretory products on hatchery-reared salmons. Bur. Sport. Fish. Wild. Res. Rep. No. 66.pp.12. Cameron, J.N., 1971. Methemoglobin in erythrocytes of rainbow trout. Comp. Physical. 40A:743-749. Campbell, J.W. 1973. Nitrogen excretion. In: C.L. Prosser (Ed) Comparative Animal Physiology. Third Edition W.D. Saunders, Toronoto, Ont: 966 pp. Castillo F.,Caballero F.J.and Conrado M.,1986,“Nitrite uptake system in photosythetic bacteria Rhodopseudomonas capsulata E1F1.”Biochimica Biophysica Acta.848,16-23. Chen, J.C. and Kou, Y.Z., 1992. Effects of ammonia on growth and molting of Penaeus japonicus juveniles. Aquaculture, 104: 249-260. Chen, J.C., Liu, P.C. and Lei, S.C., 1990. Toxicities of ammonia and nitrite to Penaeus Monodon adolescents. Aquaculture. 89: 253-262. Chiang, H.C. and Lee, J.C., 1986. Study of treatment and reuse of aquaculture wastewater in Taiwan. Aquacul. Eng., 5: 301-312. Chien, Y. H. and Liang, R. Y.,1994,Paper presented in World Aquaculture ’94, New Orleans, Louisiana, Jan. p.12. Chien, Y.H. and Wei, T.Z., 1993. The effects of photosynthetic bacteria Rhodopseudomonas capsulatus on submerged sediment chemistry under various temperature, salinity, and light intensity regime. Paper presented in Would Aquaculture ''93, Torremolinos, Spain, May 26-28. Colt, J.E. and Tchobanoglous, G.T., 1978. Evaluation of short-term toxicity of nitrogenous compounds to channel catfish, Ictalurud punctatus. Aquaculture, 8: 209-224. Dierstein, R. and Drews, G., 1975. Control of composition and activity of the photosynthetic apparatus of Rhodopseudomonas capsulata grown in ammonium-limited continuous culture. Arch. Microbiol., 106(3): 227-235. Dobao, M.M. Luque, M.M. and Castillo, F., 1993. Nitrate reductase activity in spheroplasts from Rhodobacter capsulatus E1F1 requiresa periplasmic protein. Arch. Microbiol., 160: 471-476. Herbert, R. A., 1976. Isolatio and identification of photosynthetic bacteria (Rhodospirillaceae) from antarctic marine and freshwater sediments. J. Appl. Bacteriol., 41: 75-80. Hirotani, H., Ohigashi, H., Kobayashi, M., Koshimizu, K. and Takahashi, E. FEMS Microbiol. Lett. 77,p.13, 1991. Nagadomi,H. Hiromitsu,T. Takeno,K. Watanabe,M and Sasak,K ,1999 Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads JOURNAL OF BIOSCIENCE AND BIOENGINEERING;Vol. 87, No. 2, 189-193. Imhoff, J.F., 1982. Occurrence and evolutionary significance of two sulfate assimilation pathways in the Rhodospirillaceae. Arch. Microbiol. 132: 197-203. Imhoff, J.F., Truper, H.G. and Pfenning, N., 1984. Rearrangement of the species and genera of the phototrophic purple nonsulfur bacteria. J. System. Bacteriol., 34(3): 340-343. Kim J.S.,Ito K. and Takahashi H.,1981 “Production of molecular hydrogen by Rhodopseudomonas sp.” J. Ferment. Technol., Vol. 59,p.185-190. Klaas J. Hellingwerf, WIM DE VRIJ, AND WIL N. KONINGS,Wavelength Dependence of Energy Transduction in Rhodopseudomonas sphaeroides: Action Spectrum of Growth,JOURNAL OF BACTERIOLOGY,Vol. 151,p. 534-541,Aug. 1982. Kobayashi., M 1972. Utilization of photosynthetic bacteria. Proc. Ifs. Ferment. Technol., 527-531. Koiller, M. and Avtalion, R.R., 1985. A laboratory scale recycling water unit for tilapia breeding. Aquacult. Eng., 4: 235-246. Kranz R. G. and Haselkorn R.,1986, “Anaerobic regulation of nitrogen - fixation genes in Rhodopseudomonas capsulata. ”Proc.Natl.Acad.Sci.83,6805-6809. Tseng,Kuo-Feng,2004, Submerged biofilter used in a recirculating eel culture system,Aquacultural Engineering 31,17-30. Lascelles, J., 1959. Biochem. J. 72: 508. Lee, C. M., Chen, P. C., Wang, C. C., Tung, Y. C., 2002 . Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. International Journal of Hydrogen Energy, 27(11-12). Lee.kwangyong, Nitrogen Removal from Wastewaters by Microalgae Without Consuming Organic Carbon Sources, J.microbiol.Biotechnol.,2002,12(6),979-985. Lloyd, R. and Orr, L.D., 1969. The diuretic response of rainbow trout to sublethal concentrations of ammonia. Water Res., 3: 335-344. Madigan, M.T. and Gest, h., 1979. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J. Bacteriol. 137(1): 524-530. Mangum, C.P., Cilverthron, S.U., Harris, J.L., Towle, D.W. and Krall, A.R., 1976. The relationship between blood pH , ammonia excreyion and adaption to low salinity in the blue crab Callinectes sapidus. J. Exp. Zool., 195: 129-136. McEwan, A. G.,Greenfield A. J.,Wetzstein H.G.,Jackson J.B.and Ferguson S.J.,1985, “Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. ”J.bacteriol.164,823-830. Miller, G.E. and Libey, G.S., 1984. Evalution of a trickling in a recirculating aquaculture system containing channel catfish. Aquacult. Eng., 3:39-57. Olson, K.R. and Fromm, P.O., 1971. Excretion of urea by two teleost exposed to different concentration of ambient ammonia. Comp. Biochem. Physiol., 40A: 999-1007. Pfennig, N. 1967. Annu. Rev. Microbiol., 21, 285. Pfennig, N. Ann. Rev. Microbiol. 31, p.275, 1977. Pillay ,T.V.R.,1992.Aquaculture and Environment. Halsted Press. New York ,Toronto. Poxton, M.G. and Allouse, S.B., 1987. Cyclical fluctuation in ammonia and nitrite-nitrogen resulting from the feeding of turbot, Scophthalmus maximus, in recirculating system. Aquacult. Eng., 6: 301-322. Reddy, K.R. and Patrick, Jr. W. H., 1984. Nitrogen transformation loss in flooded soils and sediment. CRC Critical Review in Environ. Control., 13: 273-309. Sasikala, C. and Ramana, C. V., Adv. Appl. Microbiol. 41,p. 174,1995. Sawada, H., Parr, R.C. and Rogers, P.L., 1977. Photosynthetic bacteria in waste treatment. J. Ferment. Technol., 55(4): 326-336. Sharma, B. and R.C. 1977. Nitrification and nitrogen removal. Water Res., 11:879-925. Smith, C.E. and W.G. Williams 1974. Experimental nitrite toxicity in rainbow trout and chinook salmon. Trans. Amm. Fish. Soc., 103:389-390. Smith, C.E.and R.C. Russo 1975. Nitrite-induced methemoglobinemia in rainbow trout. Prog. Fish-Cult., 37(3):150-152. Spotte, S. 1979. Fish and Invertebrate Culture, Water Management in Closed Systems, 2nd end, Wiley-Interscience, New York, 114 p. Stevens, p., Sypt,H.V., Vos, P.D. and Ley, J.D., 1983. Comparative study on H2 evolution from DL-lactate, acetate and butyrate by different strains of Rhodopseudomonas capsulata in a new type of reactor. Bioterchnol. Lett., 5(6): 369-374. Suhaimi, M., Kiessens, J. and Verstraete, W., 1987. NH4+-N assimilation by Rhodobacter capsulatus ATCC 23782 grown axenically and non-axenically in N and C rich media. J. Appl. Bacteriol., 62: 53-64. Kikuta and Fukada, Water quality control of aquarium water for admired fishes. In: M. Murakami, Editor, Examples of purification of the waters for environmental use, Power-Sha, Tokyo (1996), pp. 11–17. Takakuwa, S., Odom, J.M. and Wall, J.D., 1983. Hydrogen uptake deficient mutants of Rhodopseudomonas capsulatus, Arch. Microbiol., 136: 20-25. Takayashi, M., and Ichimora, S., 1970. Photosynthetic properties and growth of photosynthetic bacteria in lakes. Limnol. Oceanogr., 15: 929-944. Thurston, R.V., Russo, R.C. and Emerson, K, 1979. Aqueous ammonia equilibrium-tabulation of percent un-ionzed ammonia. Enviromental Protection Agency Ecological Research series EPA-600/3-79-091. Vincenzini, M., Materassi,R., Sili,C., and Balloni, W., Int. J.Hydrogen Energy, 11, p.623, 1986. Weston,D.P.(1996) Environmental considerations in the use of antibacterial drugs in aquaculture. In:Baird,D., nBeveridge ,M.V.M., Kelly,L.A.,Muir,J.F.(Eds.),Aquaculture and Water Resource Management.Blackwell,Oxford,140-165. Willison, J. C., 1993. Biochemical genetics revisted: the use of mutants to stuy carbon and nitrogen metabolism in the photosynthetic bacteria. FEMS Microbiol. Rev., 104: 1-38. Yen, H.C. and Marrs, B., 1977. Growth of Rhodopseudomonas capsulatus under anaerobic dark conditions with dimethyl sulfoxide. Arch. Biochem. Biophysiol., 181: 411-418. 小林正泰,1978,光合细菌处理高浓度有机废水《发酵与工业(日)》,1978 / 36 / 09,P.753-760。 小林達治,1967,光合菌的大量培養方法,<特許公報>(日),昭42-11979,1967。 小林達治,1975。光合成細菌 基礎 應用II。土肥誌,46,p.148-156。 冉繁華、陳秀男,2006,益生菌在養殖管理系統的研發與應用,縵魚養殖之健康管理,行政院農委會水產試驗所,167-190頁。 矢木修身,用水的廢水,(發酵的工業),19(8),1977,949-951。 佐藤敏生,1984。光合成細菌 窒素代謝p. 47-61.北村 博、森田茂廣、山下仁平編,光合成細菌, 學會出版。 宋作人,1984,活性污泥法添加及未添加光合菌處理魚巿場廢水,國立成功大學環境工程研究所碩士論文。 林智中,光合菌的分離、培養及在養殖方面應用之研究,台灣國立海洋科技大學,碩士論文,1999,NO.088NTOU0086021。 張志強,2000,光合菌在光合菌反應器產氫之研究,國立中央大學化學工程研究所碩士論文。 張怡塘,2002,微生物實驗,高立出版,第二版修訂。 陳秀男 ,1994, 蝦病管理對策。行政院農委會,144 pp。 陳耕鎔,2007,光合菌對水中硝酸鹽去除率之研究 ,崑山環工所 ,專題研究。 黃世鈴,2006, 縵魚養殖之健康管理。行政院農委會水產試驗所。 黃汝賢、曾國鋒、廖一久,1991,養殖池水循環處理利用系統之探討,p.119~131。第十六屆廢水處理技術研討會論文集。 劉敏主,2006,血液學檢查法,行政院農業委員會家畜衛生試驗所參考手冊,動物傳染病實驗室檢驗方法第十章。http://vettech.nvri.gov.tw/Articles/handbook/73.html 澤田英子、佐藤敏生,1984,脫窒光合成細菌 脫窒素作用。P.175-180。北村 博、森田茂廣、山下仁平編,光合成細菌,學會出版 。 環境保護署環境檢驗所,2002,水質檢測方法,NIEA W418.51C。http://www.niea.gov.tw/niea/WATER/W41851C.htm 環境保護署環境檢驗所,2005,水質檢測方法,NIEA W446.52C。http://www.niea.gov.tw/niea/WATER/W446.52C.htm 魏志榮,陳瑤湖,1989。在不同溫度、鹽度、與光照度下光合菌對養殖池底質及水質之影響。國立海洋大學,水產養殖研究所。 羅美棧,孫全杰,羅玉輝,巫健次,1973。以光合菌及綠藻處理水肥之研究(第三期研究報告)。臺灣環境衛生,5(1):21-39。 蘇偉成、劉富光,2005臺灣水產養殖的永續經營。科學發展,385期,42-49頁。 水中氮循環對水產養殖系統有極大的影響,氮源對於魚蝦貝類所產生的毒性傷害,往往是水產養殖系統中無形的殺手,而氮循環中固氮作用所產生的銨氮(Ammonium-NH4+)及亞硝酸鹽(Nitrogen dioxide-NO2- ),在海水或淡水中濃度高於2mg/L時,魚類即可能產生病變,有鑑於此,本研究期望藉由光合菌 (Photosynthesis Bacteria;PSB)有效控制水中無機氮之濃度,將對水產養殖業有所幫助。 本研究利用紫色不含硫光合菌(Rhodopseudomonas sphaeroides P4株菌)為材料,藉由此微生物製劑方式來控制水中氮源之含量,並對光合菌量的添加菌量及除氮效率之影響加以研究。 本實驗結果顯示光合菌培養至一百二十小時後,菌量可達飽和量濃度109no./ml,光合菌培養過程中的水中酸鹼值於第二十四小後開始趨向弱鹼性,其光合菌數與Abs(OD660)吸光值兩者的相關性R2=0.9941,我們將藉由Abs(OD660)所測得之吸光值作為定量光合菌濃度(Klaas,1982)。第二部分顯示,在五種不同水中亞硝酸鹽濃度下,菌量108 no. /ml於24小時後,水中亞硝酸鹽去除率達100%,另外光合菌在五種不同銨氮濃度下,光合菌菌量於108 no./ml作為120小時後,銨氮去除率平均都可達58%。第三部分顯示不同菌量濃度中,以109no. /ml菌量去除亞硝酸鹽效率最佳,而菌量108no. /ml去除銨氮效率最佳可逹93%。第四部分結果顯示,養殖池水對除氮效率上並無影響效果,但光合菌可穩定養殖池水中的酸鹼度。 The nitrogen cycle of aquatic ecosystem plays an important role, especially inaquatic farms. The effluent of nitrogen source is an invisible killer that could harm the aqua products. In the seawater or fresh water systems, the concentration of Ammonium(NH4+) and Nitrous acid(NO2-) higher than 2mg/L may cause the pathological change of fish. Therefore,this research was designed to study the use of Photosynthetic bacteria (PSB) to biomanipulate the concentration of inorganic nitrogen in the aquatic system. It might be helpful to the aquatic farms and aquatic environments if the increase of nitrogen concentrate is controlled efficiently. Rhodopseudomonas sphaeroides was used in this study and Microbial Pesticides methods were applied to control the content of nitrogen source in aquatic experiments. The results show that the amount of bacteria was saturated after 120 hours culture of R. sphaeroides. The saturated bacterial concentration reached to 109no./ml. In the process of culture, the pH value becomes weak alkalescence after 24 hour culture. The correlation between the amount of R.sphaeroides and the absorbance value of optical density at 660 nm is R2=0.9941. The Abs(OD660) values were utilized to measure the quantities of R. sphaeroides(Klaas,1982). Then, R. sphaeroides (108 no./ml) were added in five different concentrations of Nitrous acid in water to study the removal of Nitrous acid after 24 hours. The results show that all Nitrogen acid can be removed by R. sphaeroides completely. Next, R. sphaeroides (108 no./ml) were added in five different concentrations of Ammonium to study the removal rate of Ammonium. The removal rate of Ammonium is about 58% after 120 hours. Third, among three levels of bacterium concentration, the concentration of 109no. /ml is the best for removing Nitrous acid. Fourth, R. sphaeroides can stabilize the pH value in the water of aquaculture pond, but it has no effect on the removal of Nitrogen.
format Thesis
author 施宣佑
Shih,Sniuan-You
author_facet 施宣佑
Shih,Sniuan-You
author_sort 施宣佑
title 紫色不含硫光合菌對水中氮源之影響研究
title_short 紫色不含硫光合菌對水中氮源之影響研究
title_full 紫色不含硫光合菌對水中氮源之影響研究
title_fullStr 紫色不含硫光合菌對水中氮源之影響研究
title_full_unstemmed 紫色不含硫光合菌對水中氮源之影響研究
title_sort 紫色不含硫光合菌對水中氮源之影響研究
publishDate 2009
url http://ir.hwai.edu.tw:8080/ir/handle/310996100Q/1305
long_lat ENVELOPE(-61.581,-61.581,-62.824,-62.824)
ENVELOPE(162.650,162.650,-77.967,-77.967)
ENVELOPE(168.733,168.733,-71.583,-71.583)
ENVELOPE(-168.583,-168.583,-84.933,-84.933)
ENVELOPE(-27.635,-27.635,-80.759,-80.759)
ENVELOPE(-61.517,-61.517,-71.617,-71.617)
ENVELOPE(-60.667,-60.667,-63.950,-63.950)
ENVELOPE(-45.316,-45.316,-60.700,-60.700)
ENVELOPE(-97.500,-97.500,-71.833,-71.833)
ENVELOPE(59.326,59.326,-67.248,-67.248)
geographic Antarctic
Austin
Caballero
Chiang
Emerson
Ferguson
Greenfield
Odom
Orleans
Saunders
Thurston
Wilkins
geographic_facet Antarctic
Austin
Caballero
Chiang
Emerson
Ferguson
Greenfield
Odom
Orleans
Saunders
Thurston
Wilkins
genre Antarc*
Antarctic
Scophthalmus maximus
Turbot
genre_facet Antarc*
Antarctic
Scophthalmus maximus
Turbot
op_relation http://ir.hwai.edu.tw:8080/ir/handle/310996100Q/1305
_version_ 1766020418982903808
spelling fthunghwauniv:oai:lib-ir:310996100Q/1305 2023-05-15T13:31:42+02:00 紫色不含硫光合菌對水中氮源之影響研究 The Effect of Rhodopseudomonas sphaeroides to Nitrogen Source in Aquatic System 施宣佑 Shih,Sniuan-You 2009 http://ir.hwai.edu.tw:8080/ir/handle/310996100Q/1305 zh_TW en_US chi eng http://ir.hwai.edu.tw:8080/ir/handle/310996100Q/1305 光合菌 銨氮 亞硝酸鹽 紫色不含硫光合菌(Rhodopseudomonas sphaeroides) Photosynthetic bacteria Rhodopseudomonas sphaeroides Ammonium Nitrous acid 6 thesis 2009 fthunghwauniv 2019-11-30T11:57:15Z 英文摘要 . IV 致謝 . V 目錄 . VI 圖目錄 . XI 表目錄 . XIV 第壹章 緒論 . 1 1.1. 研究動機 . 1 1.2. 研究目的 . 3 第貳章 文獻回顧 . 5 2.1. 前言 . 5 2.2. 光合菌簡介與應用 . 11 2.3. 光合反應的固氮和能量獲得的形式 . 16 2.3.1. 光合反應的固氮方式 . 16 2.3.2. 光合菌的獲能形式 . 17 2.4. 光合菌的營養需求 . 18 2.4.1. 光合菌的碳源 . 18 2.4.2. 光合菌的氮源 . 19 2.5. 影響固氮作用的因素 . 20 2.6. 光合菌除氮功能研究現況 . 21 2.6.1. 光合菌之研究現況 . 21 2.6.2. 現今生物性除氮方式 . 23 第參章 實驗材料與分析方法 . 26 3.1. 實驗材料 . 26 3.1.1. 微生物 . 26 3.1.2. 本實驗使用之培養基 . 27 3.1.3. 實驗用藥品 . 28 3.2. 實驗用儀器與設備 . 32 3.2.1. 儀器設備 . 32 3.2.2. 光合菌培養條件和測試儀器 . 32 3.3. 光合菌的培養方法 . 33 3.3.1. 全封閉式厭氣光照培養(厭氣光合菌的培養) . 33 3.3.2. 光合菌菌種保存 . 34 3.3.3. 光合菌解凍生長 . 34 3.4. 分析方法 . 34 3.4.1. 細胞固定化 . 34 3.4.2. 分光光度計測量方法 . 34 3.4.3. 血球計數盤 . 35 3.4.4. 水中銨分析 . 36 3.4.5. 水中亞硝酸鹽(NO2)的分析 . 38 3.4.6. 格蘭氏染色法 . 39 第肆章 實驗設計 . 42 4.1. 預備試驗 . 42 4.1.1 採樣時間與地點 . 42 4.1.2 水樣採集 . 42 4.1.3 水質分析方法 . 42 4.2. 光合菌之培養、定性、定量 . 43 4.2.1 光合菌之收集及吸收波長鑑定 . 43 4.2.2 標準曲線製作 . 44 4.2.3 光合菌培養環境的設計與製作 . 45 4.2.4 光合菌之生長曲線製作 . 46 4.3. 不同濃度的氮源對光合菌之影響 . 48 4.3.1 針對不同銨氮濃度對光合菌之影響 .48 4.3.2 針對不同亞硝酸鹽濃度對光合菌之影響 . 48 4.4. 不同菌量的光合菌對氮源之影響 . 49 4.4.1 針對不同光合菌菌量對銨氮混合溶液影響 . 49 4.4.2 針對不同光合菌菌量對亞硝酸鹽混合溶液影響 . 49 4.5. 應用於養殖池水之模擬試驗 . 50 4.6. 實驗流程 . 54 4.7. 除氮率計算公式 . 55 第伍章 結果與討論 . 56 5.1. 預備試驗 . 56 5.2. 光合菌之培養、定性、定量 .59 5.2.1 R. sphaeroides 吸收光譜 . 59 5.2.2 R. sphaeroides 外型 . 61 5.2.3 光合菌的培養環境 . 62 5.2.4 光合菌之標準曲線製作 . 65 5.2.5 光合菌之生長曲線製作 . 66 5.2.6 銨氮濃度及亞硝酸鹽濃度之標準曲線製作 . 68 5.3. 不同濃度的氮源對光合菌之影響 . 70 5.3.1 針對不同銨氮濃度對光合菌之影響 . 70 5.3.2 針對不同亞硝酸鹽濃度對光合菌之影響 . 72 5.4. 不同菌量的光合菌對氮源之影響 . 74 5.4.1 針對不同光合菌菌量對銨氮溶液影響 . 74 5.4.2 針對不同光合菌菌量對亞硝酸鹽影響 . 77 5.5. 應用於養殖池水之模擬試驗 . 80 5.5.1 養殖池水對光合菌去除銨氮效果影響試驗 . 80 5.5.2 養殖池水對光合菌去除亞硝酸鹽效果影響試驗 . 82 5.5.3 養殖池水中含光合菌及不含光合菌的酸鹼度變化 . 84 第陸章 結論與建議 . 87 6.1. 結論 . 87 6.2. 建議 . 88 第柒章 參考文獻 . 90 圖目錄 圖2-1、全面的疾病防治系統 . 6 圖2-2、氮循環 . 7 圖2-3、養殖池中的共生關係 . 8 圖2-4、益生菌利用周遭產物淨化環境 . 10 圖2- 5、Metabolic processes of R. palustris. . 22 圖2- 6、 Rhodopseudomonas sphaeroides(ESM) . 22 圖2-7、光合菌光合作用 . 23 圖3-1、血球計數盤 .36 圖3-2、格蘭氏染色劑 . 41 圖4-1、對半稀釋法 . 44 圖4-2、光合反應培養系統 . 45 圖4-3、不再添加營養物質密閉空間之微生物生長曲線圖 . 47 圖4-4、實驗室內鰻魚養殖魚缸 . 53 圖4-5、光合菌對氮源影響實驗設計流程圖 . 55 圖5-1、嘉義鰻魚養殖池 . 57 圖5-2、R. sphaeroides 吸收光譜 . 60 圖5-3、使用結晶紫染色R. sphaeroide 放大400 倍 . 61 圖5-4、光合菌反應器 . 63 圖5-5、光合菌反應器內部照度值及溫度比較 . 64 圖5-6、R. sphaeroides 定量標準曲線 . 65 圖5-7、R. sphaeroides 之生長曲線與pH 變化 . 67 圖5-8、R. sphaeroides 接種後培養第一小時 . 67 圖5-9、R. sphaeroides 接種後培養第九十六小時 . 68 圖5-10、銨氮濃度之標準曲線 . 69 圖5-11、亞硝酸鹽濃度之標準曲線 . 69 圖5-12、不同濃度的銨氮對光合菌之影響 . 71 圖5-13、不同濃度的銨氮對光合菌之除氮率比較 . 71 圖5-14、不同濃度的亞硝酸鹽對光合菌之影響 . 73 圖5-15、不同濃度的亞硝酸鹽對光合菌之除氮率比較 .73 圖5-16、不同菌量的光合菌對銨氮溶液影響 . 75 圖5-17、不同菌量的光合菌對銨氮之除氮率比較 . 76 圖5-18、不同菌量的光合菌對亞硝酸鹽影響 . 78 圖5-19、不同菌量的光合菌對亞硝酸鹽之除氮率比較 . 78 圖5-20、不同光合菌菌量對銨氮及亞硝酸鹽影響顏色變化圖 . 79 圖5-21、養殖池水中去除銨氮效果影響試驗 . 81 圖5-22、養殖池水中去除亞硝酸鹽效果影響試驗 . 83 圖5-23、養殖池水中除氮效率 . 83 圖5-24、加入光合菌及沒有加入光合菌溶液的酸鹼度變化 . 86 圖5-25、養殖池水對光合菌除氮效果影響試驗其顏色變化 . 86 表目錄 表2-1、光合菌菌體組成 . 12 表2-2、光合菌B 群維生素組成 . 12 表2-3、具有氫氣之生產能力之厭氧光合菌 . 15 表2-4、光合菌的分類學特徵 . 16 表2-5、在各種培養條件下光合菌的生長及其獲能形式 . 18 表2-6、A comparison of NH4+, NO2- ,DO,BOD, H2S,pH and Temp. . 57 表2-7、A comparison of NH4+, NO2- , PO4, ΣN, ΣP . 58 表2-8、現今生物性除氮歸納 . 25 表3-1、BCRC13100 紫色不含硫菌Rhodopseudomonas sphaeroides. 26 表3-2、Medium 66 . 27 表3-3、紫色不含硫菌的生長的培養配方 . 27 表4-1、各種菌綠素的吸收波長 . 44 表4-2、不同濃度的氮源對光合菌之影響不同銨氮及亞硝酸鹽濃度配置表 51 表4-3、不同菌量的光合菌對氮源之影響不同光合菌菌量配置表 . 52 表4-4、應用於養殖池水之模擬試驗養殖池水之菌量及無機氮配置表. 53 表5-1、A comparison of NH4+, NO2- ,DO,BOD, H2S,pH and Temp.,℃.57 表5-2、A comparison of NH4+, NO2- , PO4, ΣN, ΣP . 58 表5-3、不同濃度的銨氮對光合菌之除氮率比較表 . 71 表5-4、不同濃度的亞硝酸鹽對光合菌之除氮率比較表 . 73 表5-5、不同菌量的光合菌對銨氮之除氮率比較表 . 76 表5-6、不同菌量的光合菌對亞硝酸鹽之除氮率比較表 . 79 表5-7、養殖池水中除氮效率 . 84 表5-8、光合菌於養殖池水中pH 值變化 . 85 參考文獻 Aiking, H. and Sojka, G., 1979. Response of Rhodopseudomonas capsulata to illumination and growth rate in a light-limited continuous culture. J. Bacteriol., 139(1):530-536. Armstong, D.A., 1979. Nitrogen toxicity to crustacea and aspects of its dynamics in culture system. In : D.Lewis and J. Ling (eds.), 2nd Biennial Crustacean Health Workshop. Texas A and M Sea Grant, TAMM-SE-79-114, Texas, pp. 329-360. Austin,B.(1985) Antibiotics pollution from fish farm :effects on aquatic .Microbiol.Sci.,2(4):113-7. Berger's Manual of Systematic Bacteriology, Vol. 1. Williams & Wilkins, Baltimore, MD, 1984, p.545-548. Bovendeur, J., Eding, E.H. and Henken, A.M., 1987. Design and performance of a water recirculative system for high-density culture of the African catfish, Clarias gariepinus. Aquaculture, 63: 329-353. Brunson, M.W., C.G. Lutz and R.M. Durborow. 1994. Algae blooms in commercial fish production farms. Southern Regional Aquaculture Center (SRAC) Publication No. 466. Burrow, R.E., 1964. Effects of accumulated excretory products on hatchery-reared salmons. Bur. Sport. Fish. Wild. Res. Rep. No. 66.pp.12. Cameron, J.N., 1971. Methemoglobin in erythrocytes of rainbow trout. Comp. Physical. 40A:743-749. Campbell, J.W. 1973. Nitrogen excretion. In: C.L. Prosser (Ed) Comparative Animal Physiology. Third Edition W.D. Saunders, Toronoto, Ont: 966 pp. Castillo F.,Caballero F.J.and Conrado M.,1986,“Nitrite uptake system in photosythetic bacteria Rhodopseudomonas capsulata E1F1.”Biochimica Biophysica Acta.848,16-23. Chen, J.C. and Kou, Y.Z., 1992. Effects of ammonia on growth and molting of Penaeus japonicus juveniles. Aquaculture, 104: 249-260. Chen, J.C., Liu, P.C. and Lei, S.C., 1990. Toxicities of ammonia and nitrite to Penaeus Monodon adolescents. Aquaculture. 89: 253-262. Chiang, H.C. and Lee, J.C., 1986. Study of treatment and reuse of aquaculture wastewater in Taiwan. Aquacul. Eng., 5: 301-312. Chien, Y. H. and Liang, R. Y.,1994,Paper presented in World Aquaculture ’94, New Orleans, Louisiana, Jan. p.12. Chien, Y.H. and Wei, T.Z., 1993. The effects of photosynthetic bacteria Rhodopseudomonas capsulatus on submerged sediment chemistry under various temperature, salinity, and light intensity regime. Paper presented in Would Aquaculture ''93, Torremolinos, Spain, May 26-28. Colt, J.E. and Tchobanoglous, G.T., 1978. Evaluation of short-term toxicity of nitrogenous compounds to channel catfish, Ictalurud punctatus. Aquaculture, 8: 209-224. Dierstein, R. and Drews, G., 1975. Control of composition and activity of the photosynthetic apparatus of Rhodopseudomonas capsulata grown in ammonium-limited continuous culture. Arch. Microbiol., 106(3): 227-235. Dobao, M.M. Luque, M.M. and Castillo, F., 1993. Nitrate reductase activity in spheroplasts from Rhodobacter capsulatus E1F1 requiresa periplasmic protein. Arch. Microbiol., 160: 471-476. Herbert, R. A., 1976. Isolatio and identification of photosynthetic bacteria (Rhodospirillaceae) from antarctic marine and freshwater sediments. J. Appl. Bacteriol., 41: 75-80. Hirotani, H., Ohigashi, H., Kobayashi, M., Koshimizu, K. and Takahashi, E. FEMS Microbiol. Lett. 77,p.13, 1991. Nagadomi,H. Hiromitsu,T. Takeno,K. Watanabe,M and Sasak,K ,1999 Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads JOURNAL OF BIOSCIENCE AND BIOENGINEERING;Vol. 87, No. 2, 189-193. Imhoff, J.F., 1982. Occurrence and evolutionary significance of two sulfate assimilation pathways in the Rhodospirillaceae. Arch. Microbiol. 132: 197-203. Imhoff, J.F., Truper, H.G. and Pfenning, N., 1984. Rearrangement of the species and genera of the phototrophic purple nonsulfur bacteria. J. System. Bacteriol., 34(3): 340-343. Kim J.S.,Ito K. and Takahashi H.,1981 “Production of molecular hydrogen by Rhodopseudomonas sp.” J. Ferment. Technol., Vol. 59,p.185-190. Klaas J. Hellingwerf, WIM DE VRIJ, AND WIL N. KONINGS,Wavelength Dependence of Energy Transduction in Rhodopseudomonas sphaeroides: Action Spectrum of Growth,JOURNAL OF BACTERIOLOGY,Vol. 151,p. 534-541,Aug. 1982. Kobayashi., M 1972. Utilization of photosynthetic bacteria. Proc. Ifs. Ferment. Technol., 527-531. Koiller, M. and Avtalion, R.R., 1985. A laboratory scale recycling water unit for tilapia breeding. Aquacult. Eng., 4: 235-246. Kranz R. G. and Haselkorn R.,1986, “Anaerobic regulation of nitrogen - fixation genes in Rhodopseudomonas capsulata. ”Proc.Natl.Acad.Sci.83,6805-6809. Tseng,Kuo-Feng,2004, Submerged biofilter used in a recirculating eel culture system,Aquacultural Engineering 31,17-30. Lascelles, J., 1959. Biochem. J. 72: 508. Lee, C. M., Chen, P. C., Wang, C. C., Tung, Y. C., 2002 . Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. International Journal of Hydrogen Energy, 27(11-12). Lee.kwangyong, Nitrogen Removal from Wastewaters by Microalgae Without Consuming Organic Carbon Sources, J.microbiol.Biotechnol.,2002,12(6),979-985. Lloyd, R. and Orr, L.D., 1969. The diuretic response of rainbow trout to sublethal concentrations of ammonia. Water Res., 3: 335-344. Madigan, M.T. and Gest, h., 1979. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J. Bacteriol. 137(1): 524-530. Mangum, C.P., Cilverthron, S.U., Harris, J.L., Towle, D.W. and Krall, A.R., 1976. The relationship between blood pH , ammonia excreyion and adaption to low salinity in the blue crab Callinectes sapidus. J. Exp. Zool., 195: 129-136. McEwan, A. G.,Greenfield A. J.,Wetzstein H.G.,Jackson J.B.and Ferguson S.J.,1985, “Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata. ”J.bacteriol.164,823-830. Miller, G.E. and Libey, G.S., 1984. Evalution of a trickling in a recirculating aquaculture system containing channel catfish. Aquacult. Eng., 3:39-57. Olson, K.R. and Fromm, P.O., 1971. Excretion of urea by two teleost exposed to different concentration of ambient ammonia. Comp. Biochem. Physiol., 40A: 999-1007. Pfennig, N. 1967. Annu. Rev. Microbiol., 21, 285. Pfennig, N. Ann. Rev. Microbiol. 31, p.275, 1977. Pillay ,T.V.R.,1992.Aquaculture and Environment. Halsted Press. New York ,Toronto. Poxton, M.G. and Allouse, S.B., 1987. Cyclical fluctuation in ammonia and nitrite-nitrogen resulting from the feeding of turbot, Scophthalmus maximus, in recirculating system. Aquacult. Eng., 6: 301-322. Reddy, K.R. and Patrick, Jr. W. H., 1984. Nitrogen transformation loss in flooded soils and sediment. CRC Critical Review in Environ. Control., 13: 273-309. Sasikala, C. and Ramana, C. V., Adv. Appl. Microbiol. 41,p. 174,1995. Sawada, H., Parr, R.C. and Rogers, P.L., 1977. Photosynthetic bacteria in waste treatment. J. Ferment. Technol., 55(4): 326-336. Sharma, B. and R.C. 1977. Nitrification and nitrogen removal. Water Res., 11:879-925. Smith, C.E. and W.G. Williams 1974. Experimental nitrite toxicity in rainbow trout and chinook salmon. Trans. Amm. Fish. Soc., 103:389-390. Smith, C.E.and R.C. Russo 1975. Nitrite-induced methemoglobinemia in rainbow trout. Prog. Fish-Cult., 37(3):150-152. Spotte, S. 1979. Fish and Invertebrate Culture, Water Management in Closed Systems, 2nd end, Wiley-Interscience, New York, 114 p. Stevens, p., Sypt,H.V., Vos, P.D. and Ley, J.D., 1983. Comparative study on H2 evolution from DL-lactate, acetate and butyrate by different strains of Rhodopseudomonas capsulata in a new type of reactor. Bioterchnol. Lett., 5(6): 369-374. Suhaimi, M., Kiessens, J. and Verstraete, W., 1987. NH4+-N assimilation by Rhodobacter capsulatus ATCC 23782 grown axenically and non-axenically in N and C rich media. J. Appl. Bacteriol., 62: 53-64. Kikuta and Fukada, Water quality control of aquarium water for admired fishes. In: M. Murakami, Editor, Examples of purification of the waters for environmental use, Power-Sha, Tokyo (1996), pp. 11–17. Takakuwa, S., Odom, J.M. and Wall, J.D., 1983. Hydrogen uptake deficient mutants of Rhodopseudomonas capsulatus, Arch. Microbiol., 136: 20-25. Takayashi, M., and Ichimora, S., 1970. Photosynthetic properties and growth of photosynthetic bacteria in lakes. Limnol. Oceanogr., 15: 929-944. Thurston, R.V., Russo, R.C. and Emerson, K, 1979. Aqueous ammonia equilibrium-tabulation of percent un-ionzed ammonia. Enviromental Protection Agency Ecological Research series EPA-600/3-79-091. Vincenzini, M., Materassi,R., Sili,C., and Balloni, W., Int. J.Hydrogen Energy, 11, p.623, 1986. Weston,D.P.(1996) Environmental considerations in the use of antibacterial drugs in aquaculture. In:Baird,D., nBeveridge ,M.V.M., Kelly,L.A.,Muir,J.F.(Eds.),Aquaculture and Water Resource Management.Blackwell,Oxford,140-165. Willison, J. C., 1993. Biochemical genetics revisted: the use of mutants to stuy carbon and nitrogen metabolism in the photosynthetic bacteria. FEMS Microbiol. Rev., 104: 1-38. Yen, H.C. and Marrs, B., 1977. Growth of Rhodopseudomonas capsulatus under anaerobic dark conditions with dimethyl sulfoxide. Arch. Biochem. Biophysiol., 181: 411-418. 小林正泰,1978,光合细菌处理高浓度有机废水《发酵与工业(日)》,1978 / 36 / 09,P.753-760。 小林達治,1967,光合菌的大量培養方法,<特許公報>(日),昭42-11979,1967。 小林達治,1975。光合成細菌 基礎 應用II。土肥誌,46,p.148-156。 冉繁華、陳秀男,2006,益生菌在養殖管理系統的研發與應用,縵魚養殖之健康管理,行政院農委會水產試驗所,167-190頁。 矢木修身,用水的廢水,(發酵的工業),19(8),1977,949-951。 佐藤敏生,1984。光合成細菌 窒素代謝p. 47-61.北村 博、森田茂廣、山下仁平編,光合成細菌, 學會出版。 宋作人,1984,活性污泥法添加及未添加光合菌處理魚巿場廢水,國立成功大學環境工程研究所碩士論文。 林智中,光合菌的分離、培養及在養殖方面應用之研究,台灣國立海洋科技大學,碩士論文,1999,NO.088NTOU0086021。 張志強,2000,光合菌在光合菌反應器產氫之研究,國立中央大學化學工程研究所碩士論文。 張怡塘,2002,微生物實驗,高立出版,第二版修訂。 陳秀男 ,1994, 蝦病管理對策。行政院農委會,144 pp。 陳耕鎔,2007,光合菌對水中硝酸鹽去除率之研究 ,崑山環工所 ,專題研究。 黃世鈴,2006, 縵魚養殖之健康管理。行政院農委會水產試驗所。 黃汝賢、曾國鋒、廖一久,1991,養殖池水循環處理利用系統之探討,p.119~131。第十六屆廢水處理技術研討會論文集。 劉敏主,2006,血液學檢查法,行政院農業委員會家畜衛生試驗所參考手冊,動物傳染病實驗室檢驗方法第十章。http://vettech.nvri.gov.tw/Articles/handbook/73.html 澤田英子、佐藤敏生,1984,脫窒光合成細菌 脫窒素作用。P.175-180。北村 博、森田茂廣、山下仁平編,光合成細菌,學會出版 。 環境保護署環境檢驗所,2002,水質檢測方法,NIEA W418.51C。http://www.niea.gov.tw/niea/WATER/W41851C.htm 環境保護署環境檢驗所,2005,水質檢測方法,NIEA W446.52C。http://www.niea.gov.tw/niea/WATER/W446.52C.htm 魏志榮,陳瑤湖,1989。在不同溫度、鹽度、與光照度下光合菌對養殖池底質及水質之影響。國立海洋大學,水產養殖研究所。 羅美棧,孫全杰,羅玉輝,巫健次,1973。以光合菌及綠藻處理水肥之研究(第三期研究報告)。臺灣環境衛生,5(1):21-39。 蘇偉成、劉富光,2005臺灣水產養殖的永續經營。科學發展,385期,42-49頁。 水中氮循環對水產養殖系統有極大的影響,氮源對於魚蝦貝類所產生的毒性傷害,往往是水產養殖系統中無形的殺手,而氮循環中固氮作用所產生的銨氮(Ammonium-NH4+)及亞硝酸鹽(Nitrogen dioxide-NO2- ),在海水或淡水中濃度高於2mg/L時,魚類即可能產生病變,有鑑於此,本研究期望藉由光合菌 (Photosynthesis Bacteria;PSB)有效控制水中無機氮之濃度,將對水產養殖業有所幫助。 本研究利用紫色不含硫光合菌(Rhodopseudomonas sphaeroides P4株菌)為材料,藉由此微生物製劑方式來控制水中氮源之含量,並對光合菌量的添加菌量及除氮效率之影響加以研究。 本實驗結果顯示光合菌培養至一百二十小時後,菌量可達飽和量濃度109no./ml,光合菌培養過程中的水中酸鹼值於第二十四小後開始趨向弱鹼性,其光合菌數與Abs(OD660)吸光值兩者的相關性R2=0.9941,我們將藉由Abs(OD660)所測得之吸光值作為定量光合菌濃度(Klaas,1982)。第二部分顯示,在五種不同水中亞硝酸鹽濃度下,菌量108 no. /ml於24小時後,水中亞硝酸鹽去除率達100%,另外光合菌在五種不同銨氮濃度下,光合菌菌量於108 no./ml作為120小時後,銨氮去除率平均都可達58%。第三部分顯示不同菌量濃度中,以109no. /ml菌量去除亞硝酸鹽效率最佳,而菌量108no. /ml去除銨氮效率最佳可逹93%。第四部分結果顯示,養殖池水對除氮效率上並無影響效果,但光合菌可穩定養殖池水中的酸鹼度。 The nitrogen cycle of aquatic ecosystem plays an important role, especially inaquatic farms. The effluent of nitrogen source is an invisible killer that could harm the aqua products. In the seawater or fresh water systems, the concentration of Ammonium(NH4+) and Nitrous acid(NO2-) higher than 2mg/L may cause the pathological change of fish. Therefore,this research was designed to study the use of Photosynthetic bacteria (PSB) to biomanipulate the concentration of inorganic nitrogen in the aquatic system. It might be helpful to the aquatic farms and aquatic environments if the increase of nitrogen concentrate is controlled efficiently. Rhodopseudomonas sphaeroides was used in this study and Microbial Pesticides methods were applied to control the content of nitrogen source in aquatic experiments. The results show that the amount of bacteria was saturated after 120 hours culture of R. sphaeroides. The saturated bacterial concentration reached to 109no./ml. In the process of culture, the pH value becomes weak alkalescence after 24 hour culture. The correlation between the amount of R.sphaeroides and the absorbance value of optical density at 660 nm is R2=0.9941. The Abs(OD660) values were utilized to measure the quantities of R. sphaeroides(Klaas,1982). Then, R. sphaeroides (108 no./ml) were added in five different concentrations of Nitrous acid in water to study the removal of Nitrous acid after 24 hours. The results show that all Nitrogen acid can be removed by R. sphaeroides completely. Next, R. sphaeroides (108 no./ml) were added in five different concentrations of Ammonium to study the removal rate of Ammonium. The removal rate of Ammonium is about 58% after 120 hours. Third, among three levels of bacterium concentration, the concentration of 109no. /ml is the best for removing Nitrous acid. Fourth, R. sphaeroides can stabilize the pH value in the water of aquaculture pond, but it has no effect on the removal of Nitrogen. Thesis Antarc* Antarctic Scophthalmus maximus Turbot Chung Hwa University of Medical Technology: Taiwan Academic Institutional Repository (HWAIR) Antarctic Austin Caballero ENVELOPE(-61.581,-61.581,-62.824,-62.824) Chiang ENVELOPE(162.650,162.650,-77.967,-77.967) Emerson ENVELOPE(168.733,168.733,-71.583,-71.583) Ferguson ENVELOPE(-168.583,-168.583,-84.933,-84.933) Greenfield ENVELOPE(-27.635,-27.635,-80.759,-80.759) Odom ENVELOPE(-61.517,-61.517,-71.617,-71.617) Orleans ENVELOPE(-60.667,-60.667,-63.950,-63.950) Saunders ENVELOPE(-45.316,-45.316,-60.700,-60.700) Thurston ENVELOPE(-97.500,-97.500,-71.833,-71.833) Wilkins ENVELOPE(59.326,59.326,-67.248,-67.248)