Ocean-bottom and surface seismometers reveal continuous glacial tremor and slip

Shearing along subduction zones, laboratory experiments on analogue faults, and sliding along glacier beds are all associated with aseismic and co-seismic slip. In this study, an ocean-bottom seismometer is deployed near the terminus of a Greenlandic tidewater glacier, effectively insulating the sig...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Podolskiy, Evgeny A., Murai, Yoshio, Kanna, Naoya, Sugiyama, Shin
Format: Article in Journal/Newspaper
Language:English
Published: Nature Research
Subjects:
450
Online Access:http://hdl.handle.net/2115/82501
https://doi.org/10.1038/s41467-021-24142-4
Description
Summary:Shearing along subduction zones, laboratory experiments on analogue faults, and sliding along glacier beds are all associated with aseismic and co-seismic slip. In this study, an ocean-bottom seismometer is deployed near the terminus of a Greenlandic tidewater glacier, effectively insulating the signal from the extremely noisy surface seismic wavefield. Continuous, tide-modulated tremor related to ice speed is recorded at the bed of the glacier. When noise interference (for example, due to strong winds) is low, the tremor is also confirmed via analysis of seismic waveforms from surface stations. The signal resembles the tectonic tremor commonly observed during slow-earthquake events in subduction zones. We propose that the glacier sliding velocity can be retrieved from the observed seismic noise. Our approach may open new opportunities for monitoring calving-front processes in one of the most difficult-to-access cryospheric environments. Anomalously slow earthquakes play a critical role in the earthquake cycle and fault sliding. Here, the authors detect continuous seismic radiation from a glacier sliding over its bed and show persistent coastal shaking to represent an addition to the family of slow earthquakes.