Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)

The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st...

Full description

Bibliographic Details
Published in:Earth System Dynamics
Main Authors: Levermann, Anders, Winkelmann, Ricarda, Albrecht, Torsten, Goelzer, Heiko, Golledge, Nicholas R, Greve, Ralf, Huybrechts, Philippe, Jordan, Jim, Leguy, Gunter, Martin, Daniel, Morlighem, Mathieu, Pattyn, Frank, Pollard, David, Quiquet, Aurelien, Rodehacke, Christian, Seroussi, Helene, Sutter, Johannes, Zhang, Tong, Van Breedam, Jonas, Calov, Reinhard, DeConto, Robert, Dumas, Christophe, Garbe, Julius, Gudmundsson, G. Hilmar, Hoffman, Matthew J, Humbert, Angelika, Kleiner, Thomas, Lipscomb, William H, Meinshausen, Malte, Ng, Esmond, Nowicki, Sophie M. J, Perego, Mauro, Price, Stephen F, Saito, Fuyuki, Schlegel, Nicole-Jeanne, Sun, Sainan, van de Wal, Roderik S. W
Format: Article in Journal/Newspaper
Language:English
Subjects:
452
Online Access:http://hdl.handle.net/2115/76863
https://doi.org/10.5194/esd-11-35-2020
id fthokunivhus:oai:eprints.lib.hokudai.ac.jp:2115/76863
record_format openpolar
spelling fthokunivhus:oai:eprints.lib.hokudai.ac.jp:2115/76863 2023-05-15T13:51:33+02:00 Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2) Levermann, Anders Winkelmann, Ricarda Albrecht, Torsten Goelzer, Heiko Golledge, Nicholas R Greve, Ralf Huybrechts, Philippe Jordan, Jim Leguy, Gunter Martin, Daniel Morlighem, Mathieu Pattyn, Frank Pollard, David Quiquet, Aurelien Rodehacke, Christian Seroussi, Helene Sutter, Johannes Zhang, Tong Van Breedam, Jonas Calov, Reinhard DeConto, Robert Dumas, Christophe Garbe, Julius Gudmundsson, G. Hilmar Hoffman, Matthew J Humbert, Angelika Kleiner, Thomas Lipscomb, William H Meinshausen, Malte Ng, Esmond Nowicki, Sophie M. J Perego, Mauro Price, Stephen F Saito, Fuyuki Schlegel, Nicole-Jeanne Sun, Sainan van de Wal, Roderik S. W http://hdl.handle.net/2115/76863 https://doi.org/10.5194/esd-11-35-2020 eng eng http://hdl.handle.net/2115/76863 Earth System Dynamics, 11(1): 35-76 http://dx.doi.org/10.5194/esd-11-35-2020 https://creativecommons.org/licenses/by/4.0/ CC-BY 452 article fthokunivhus https://doi.org/10.5194/esd-11-35-2020 2022-11-18T01:05:48Z The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st century. The purpose of this computation is to estimate the uncertainty of Antarctica's future contribution to global sea level rise that arises from large uncertainty in the oceanic forcing and the associated ice shelf melting. Ice shelf melting is considered to be a major if not the largest perturbation of the ice sheet's flow into the ocean. However, by computing only the sea level contribution in response to ice shelf melting, our study is neglecting a number of processes such as surface-mass-balance-related contributions. In assuming linear response theory, we are able to capture complex temporal responses of the ice sheets, but we neglect any self-dampening or self-amplifying processes. This is particularly relevant in situations in which an instability is dominating the ice loss. The results obtained here are thus relevant, in particular wherever the ice loss is dominated by the forcing as opposed to an internal instability, for example in strong ocean warming scenarios. In order to allow for comparison the methodology was chosen to be exactly the same as in an earlier study (Levermann et al., 2014) but with 16 instead of 5 ice sheet models. We include uncertainty in the atmospheric warming response to carbon emissions (full range of CMIP5 climate model sensitivities), uncertainty in the oceanic transport to the Southern Ocean (obtained from the time-delayed and scaled oceanic subsurface warming in CMIP5 models in relation to the global mean surface warming), and the observed range of responses of basal ice shelf melting to oceanic warming outside the ice shelf cavity. This uncertainty in basal ice shelf melting is then convoluted with the linear response functions of each of the 16 ice sheet models to obtain ... Article in Journal/Newspaper Antarc* Antarctic Ice Sheet Ice Shelf Southern Ocean Hokkaido University Collection of Scholarly and Academic Papers (HUSCAP) Antarctic Southern Ocean The Antarctic Earth System Dynamics 11 1 35 76
institution Open Polar
collection Hokkaido University Collection of Scholarly and Academic Papers (HUSCAP)
op_collection_id fthokunivhus
language English
topic 452
spellingShingle 452
Levermann, Anders
Winkelmann, Ricarda
Albrecht, Torsten
Goelzer, Heiko
Golledge, Nicholas R
Greve, Ralf
Huybrechts, Philippe
Jordan, Jim
Leguy, Gunter
Martin, Daniel
Morlighem, Mathieu
Pattyn, Frank
Pollard, David
Quiquet, Aurelien
Rodehacke, Christian
Seroussi, Helene
Sutter, Johannes
Zhang, Tong
Van Breedam, Jonas
Calov, Reinhard
DeConto, Robert
Dumas, Christophe
Garbe, Julius
Gudmundsson, G. Hilmar
Hoffman, Matthew J
Humbert, Angelika
Kleiner, Thomas
Lipscomb, William H
Meinshausen, Malte
Ng, Esmond
Nowicki, Sophie M. J
Perego, Mauro
Price, Stephen F
Saito, Fuyuki
Schlegel, Nicole-Jeanne
Sun, Sainan
van de Wal, Roderik S. W
Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
topic_facet 452
description The sea level contribution of the Antarctic ice sheet constitutes a large uncertainty in future sea level projections. Here we apply a linear response theory approach to 16 state-of-the-art ice sheet models to estimate the Antarctic ice sheet contribution from basal ice shelf melting within the 21st century. The purpose of this computation is to estimate the uncertainty of Antarctica's future contribution to global sea level rise that arises from large uncertainty in the oceanic forcing and the associated ice shelf melting. Ice shelf melting is considered to be a major if not the largest perturbation of the ice sheet's flow into the ocean. However, by computing only the sea level contribution in response to ice shelf melting, our study is neglecting a number of processes such as surface-mass-balance-related contributions. In assuming linear response theory, we are able to capture complex temporal responses of the ice sheets, but we neglect any self-dampening or self-amplifying processes. This is particularly relevant in situations in which an instability is dominating the ice loss. The results obtained here are thus relevant, in particular wherever the ice loss is dominated by the forcing as opposed to an internal instability, for example in strong ocean warming scenarios. In order to allow for comparison the methodology was chosen to be exactly the same as in an earlier study (Levermann et al., 2014) but with 16 instead of 5 ice sheet models. We include uncertainty in the atmospheric warming response to carbon emissions (full range of CMIP5 climate model sensitivities), uncertainty in the oceanic transport to the Southern Ocean (obtained from the time-delayed and scaled oceanic subsurface warming in CMIP5 models in relation to the global mean surface warming), and the observed range of responses of basal ice shelf melting to oceanic warming outside the ice shelf cavity. This uncertainty in basal ice shelf melting is then convoluted with the linear response functions of each of the 16 ice sheet models to obtain ...
format Article in Journal/Newspaper
author Levermann, Anders
Winkelmann, Ricarda
Albrecht, Torsten
Goelzer, Heiko
Golledge, Nicholas R
Greve, Ralf
Huybrechts, Philippe
Jordan, Jim
Leguy, Gunter
Martin, Daniel
Morlighem, Mathieu
Pattyn, Frank
Pollard, David
Quiquet, Aurelien
Rodehacke, Christian
Seroussi, Helene
Sutter, Johannes
Zhang, Tong
Van Breedam, Jonas
Calov, Reinhard
DeConto, Robert
Dumas, Christophe
Garbe, Julius
Gudmundsson, G. Hilmar
Hoffman, Matthew J
Humbert, Angelika
Kleiner, Thomas
Lipscomb, William H
Meinshausen, Malte
Ng, Esmond
Nowicki, Sophie M. J
Perego, Mauro
Price, Stephen F
Saito, Fuyuki
Schlegel, Nicole-Jeanne
Sun, Sainan
van de Wal, Roderik S. W
author_facet Levermann, Anders
Winkelmann, Ricarda
Albrecht, Torsten
Goelzer, Heiko
Golledge, Nicholas R
Greve, Ralf
Huybrechts, Philippe
Jordan, Jim
Leguy, Gunter
Martin, Daniel
Morlighem, Mathieu
Pattyn, Frank
Pollard, David
Quiquet, Aurelien
Rodehacke, Christian
Seroussi, Helene
Sutter, Johannes
Zhang, Tong
Van Breedam, Jonas
Calov, Reinhard
DeConto, Robert
Dumas, Christophe
Garbe, Julius
Gudmundsson, G. Hilmar
Hoffman, Matthew J
Humbert, Angelika
Kleiner, Thomas
Lipscomb, William H
Meinshausen, Malte
Ng, Esmond
Nowicki, Sophie M. J
Perego, Mauro
Price, Stephen F
Saito, Fuyuki
Schlegel, Nicole-Jeanne
Sun, Sainan
van de Wal, Roderik S. W
author_sort Levermann, Anders
title Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
title_short Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
title_full Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
title_fullStr Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
title_full_unstemmed Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
title_sort projecting antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (larmip-2)
url http://hdl.handle.net/2115/76863
https://doi.org/10.5194/esd-11-35-2020
geographic Antarctic
Southern Ocean
The Antarctic
geographic_facet Antarctic
Southern Ocean
The Antarctic
genre Antarc*
Antarctic
Ice Sheet
Ice Shelf
Southern Ocean
genre_facet Antarc*
Antarctic
Ice Sheet
Ice Shelf
Southern Ocean
op_relation http://hdl.handle.net/2115/76863
Earth System Dynamics, 11(1): 35-76
http://dx.doi.org/10.5194/esd-11-35-2020
op_rights https://creativecommons.org/licenses/by/4.0/
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/esd-11-35-2020
container_title Earth System Dynamics
container_volume 11
container_issue 1
container_start_page 35
op_container_end_page 76
_version_ 1766255454148624384