A New Kind of Shift Operators for Infinite Circular and Spherical Wells

A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the...

Full description

Bibliographic Details
Published in:Advances in Mathematical Physics
Main Authors: Guo-Hua Sun, K. D. Launey, T. Dytrych, Shi-Hai Dong, J. P. Draayer
Format: Review
Language:English
Published: Advances in Mathematical Physics 2014
Subjects:
IPY
Online Access:https://doi.org/10.1155/2014/987376
_version_ 1821561321800335360
author Guo-Hua Sun
K. D. Launey
T. Dytrych
Shi-Hai Dong
J. P. Draayer
author_facet Guo-Hua Sun
K. D. Launey
T. Dytrych
Shi-Hai Dong
J. P. Draayer
author_sort Guo-Hua Sun
collection Hindawi Publishing Corporation
container_start_page 1
container_title Advances in Mathematical Physics
container_volume 2014
description A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the momentum operators P±=Px±iPy play the role of shift operators. The Px and Py operators, the third projection of the orbital angular momentum operator Lz, and the Hamiltonian H form a complete set of commuting operators with the SO(2) symmetry. In spherical well, the shift operators establish a novel relation between ψlm(r) and ψ(l ± 1)(m±1)(r).
format Review
genre IPY
genre_facet IPY
id fthindawi:oai:hindawi.com:10.1155/2014/987376
institution Open Polar
language English
op_collection_id fthindawi
op_container_end_page 7
op_doi https://doi.org/10.1155/2014/987376
op_relation https://doi.org/10.1155/2014/987376
op_rights Copyright © 2014 Guo-Hua Sun et al.
publishDate 2014
publisher Advances in Mathematical Physics
record_format openpolar
spelling fthindawi:oai:hindawi.com:10.1155/2014/987376 2025-01-16T22:44:42+00:00 A New Kind of Shift Operators for Infinite Circular and Spherical Wells Guo-Hua Sun K. D. Launey T. Dytrych Shi-Hai Dong J. P. Draayer 2014 https://doi.org/10.1155/2014/987376 en eng Advances in Mathematical Physics https://doi.org/10.1155/2014/987376 Copyright © 2014 Guo-Hua Sun et al. Review Article 2014 fthindawi https://doi.org/10.1155/2014/987376 2019-05-25T23:16:40Z A new kind of shift operators for infinite circular and spherical wells is identified. These shift operators depend on all spatial variables of quantum systems and connect some eigenstates of confined systems of different radii R sharing energy levels with a common eigenvalue. In circular well, the momentum operators P±=Px±iPy play the role of shift operators. The Px and Py operators, the third projection of the orbital angular momentum operator Lz, and the Hamiltonian H form a complete set of commuting operators with the SO(2) symmetry. In spherical well, the shift operators establish a novel relation between ψlm(r) and ψ(l ± 1)(m±1)(r). Review IPY Hindawi Publishing Corporation Advances in Mathematical Physics 2014 1 7
spellingShingle Guo-Hua Sun
K. D. Launey
T. Dytrych
Shi-Hai Dong
J. P. Draayer
A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_full A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_fullStr A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_full_unstemmed A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_short A New Kind of Shift Operators for Infinite Circular and Spherical Wells
title_sort new kind of shift operators for infinite circular and spherical wells
url https://doi.org/10.1155/2014/987376