The use of distal rhynchokinesis by birds feeding in water

The use of distal rhynchokinesis, which consists of the movement of the distal part of the upper jaw with respect to the cranium, is well documented in long-billed shorebirds (Scolopacidae), commonly being associated with the deep probing feeding method. However, the functional and evolutionary sign...

Full description

Bibliographic Details
Published in:Journal of Experimental Biology
Main Authors: Estrella, Sora M., Masero, José A.
Format: Text
Language:English
Published: Company of Biologists 2007
Subjects:
Online Access:http://jeb.biologists.org/cgi/content/short/210/21/3757
https://doi.org/10.1242/jeb.007690
Description
Summary:The use of distal rhynchokinesis, which consists of the movement of the distal part of the upper jaw with respect to the cranium, is well documented in long-billed shorebirds (Scolopacidae), commonly being associated with the deep probing feeding method. However, the functional and evolutionary significance of distal rhynchokinesis and other cranial kinesis is unclear. We report for the first time the use and occurrence of distal rhynchokinesis in wild long-billed shorebirds feeding on small prey items suspended in water. We tested whether prey size in captive dunlins Calidris alpina influences the occurrence of distal rhynchokinesis during feeding and also whether its use affects foraging efficiency. We found that wild dunlin, curlew sandpiper Calidris ferruginea , sanderling Calidris alba and little stint Calidris minuta commonly use distal rhynchokinesis to strike, capture and transport small prey items. Prey size influenced the occurrence of distal rhynchokinesis during the transport phase, with this type of cranial kinesis being more frequently used with larger prey. The rhynchokinesis protraction angle (a measure of bill tip elevation) during prey strike and transport was affected by prey size, and bill gape was modulated through the use of distal rhynchokinesis in relation to prey size. Finally, the use of distal rhynchokinesis throughout intra-oral prey transport was related to shorter transport times, which improved foraging efficiency. We conclude that distal rhynchokinesis is a mechanism that could contribute to the flexible feeding behaviour of long-distance migratory shorebirds, enhancing small prey profitability and so improving foraging efficiency, and may have played a role in the evolutionary radiation of Scolopacidae (Charadrii).