Reducing Bat Fatalities Using Ultrasonic Acoustic Deterrent Technology: A Potential Mechanism for Conservation at Offshore Wind Energy Sites

In 2018, wind energy grew 12% globally in response to offset greenhouse gas emissions (IEA, 2019). While land-based wind projects (LBW) still dominate the supply chain, offshore-based wind projects (OBW) are becoming more prevalent. With this increase in wind energy deployment, the probability of in...

Full description

Bibliographic Details
Main Author: ONeil, Danielle R.
Other Authors: Leighton, Mark, Hein, Cris
Format: Thesis
Language:unknown
Published: 2020
Subjects:
Online Access:https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365062
id ftharvardudash:oai:dash.harvard.edu:1/37365062
record_format openpolar
institution Open Polar
collection Harvard University: DASH - Digital Access to Scholarship at Harvard
op_collection_id ftharvardudash
language unknown
topic Bats
wind energy
conservation
offshore wind energy
spellingShingle Bats
wind energy
conservation
offshore wind energy
ONeil, Danielle R.
Reducing Bat Fatalities Using Ultrasonic Acoustic Deterrent Technology: A Potential Mechanism for Conservation at Offshore Wind Energy Sites
topic_facet Bats
wind energy
conservation
offshore wind energy
description In 2018, wind energy grew 12% globally in response to offset greenhouse gas emissions (IEA, 2019). While land-based wind projects (LBW) still dominate the supply chain, offshore-based wind projects (OBW) are becoming more prevalent. With this increase in wind energy deployment, the probability of increased wildlife conflict also increases, particularly with bats. Wind turbines can impact certain bat species from collision events, especially during seasonal migration movements. Twenty-three of the 47 US bat species have been found as representative fatalities at LBW (AWWI, 2018). Bats and wind turbines are now unfortunately connected, due to the increase in wind turbine placements in bat migration and foraging corridors. Insectivorous bats are echolocating mammals that use ultrasonic frequencies to hunt and avoid obstacles in air space. Technology such as ultrasonic acoustic deterrents (UAD) devices that emit high frequency sound, have been used on LBW projects with mixed but generally positive results. UADs placed on wind turbines that cause echolocation disorientation within ensonified areas can help divert bats from wind energy turbine air space and help to reduce bat related collision fatalities. The objectives of this project were to identify mitigative steps to reduce bat fatalities at OBW using information gathered from LBW that have employed UADs. It was hypothesized that UAD deployment at wind energy facilities could reduce bat fatalities. A secondary objective was to determine abiotic factors that had effects on bat activity around wind turbines. A third objective was to use two echolocating mammals as proxy parameter comparisons to see if UADs would deter both groups of species from ensonfied areas similarly: bats and toothed whales (odontocetes). My assumptions were that UADs were effective at deterring bats from the ensonified areas of wind turbines and that high wind velocities, low barometric pressure and decreasing temperatures during seasonal migrations altered bat activity around wind turbines. Any successes from odontocete stranding event mitigation using aquatic UADs can be used as support for another echolocating mammal reacting to UAD use for deterrence from ensonified areas. I analyzed proprietary and published data based on field tested bat studies using UADs at several North American LBW, in collaboration with several wind energy organizations. Using generalized mixed modeling (GLMM), I identified abiotic variables that influence how and when bats interact with LBW. I compared these factors to wind energy sites that deployed UADs on some turbines and others were used as controls. As a smaller, secondary comparison, I evaluated odontocete stranding event data that deployed UADs to test if there was a feasible comparison proxy between two types of potential fatality events involving echolocating mammal species. For the first model, the GLMM results showed that presence of operational UADs on LBW treatment wind turbines was statistically significant (p <0.001) at reducing bat fatality events when compared to control wind turbines. For the second model, there was no statistically significant effects from any of the three abiotic variables on bat fatality reductions at treated LBW turbines. However, in model 3, average nightly wind speed was statistically significant at control LBW turbines. Due to insufficient data on odontocete stranding events and UAD deployment, this proxy was only used as anecdotal information. The results indicate that UADs are effective deterrents for reducing bat fatality events at LBW. Results also showed that wind speed was significant at wind turbines without deterrent technology. Nightly wind speed can act as an abiotic predictor variable on how bat activity reacts at LBW turbines. When looking to guide mitigative language for OBW, deploying UADs and monitoring for bat activity based on nightly wind fluctuations can influence bat fatality events. Sustainability
author2 Leighton, Mark
Hein, Cris
format Thesis
author ONeil, Danielle R.
author_facet ONeil, Danielle R.
author_sort ONeil, Danielle R.
title Reducing Bat Fatalities Using Ultrasonic Acoustic Deterrent Technology: A Potential Mechanism for Conservation at Offshore Wind Energy Sites
title_short Reducing Bat Fatalities Using Ultrasonic Acoustic Deterrent Technology: A Potential Mechanism for Conservation at Offshore Wind Energy Sites
title_full Reducing Bat Fatalities Using Ultrasonic Acoustic Deterrent Technology: A Potential Mechanism for Conservation at Offshore Wind Energy Sites
title_fullStr Reducing Bat Fatalities Using Ultrasonic Acoustic Deterrent Technology: A Potential Mechanism for Conservation at Offshore Wind Energy Sites
title_full_unstemmed Reducing Bat Fatalities Using Ultrasonic Acoustic Deterrent Technology: A Potential Mechanism for Conservation at Offshore Wind Energy Sites
title_sort reducing bat fatalities using ultrasonic acoustic deterrent technology: a potential mechanism for conservation at offshore wind energy sites
publishDate 2020
url https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365062
genre toothed whales
genre_facet toothed whales
op_relation ONeil, Danielle R. 2020. Reducing Bat Fatalities Using Ultrasonic Acoustic Deterrent Technology: A Potential Mechanism for Conservation at Offshore Wind Energy Sites. Master's thesis, Harvard Extension School.
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365062
_version_ 1766218197276557312
spelling ftharvardudash:oai:dash.harvard.edu:1/37365062 2023-05-15T18:33:34+02:00 Reducing Bat Fatalities Using Ultrasonic Acoustic Deterrent Technology: A Potential Mechanism for Conservation at Offshore Wind Energy Sites ONeil, Danielle R. Leighton, Mark Hein, Cris 2020-05 application/pdf https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365062 unknown ONeil, Danielle R. 2020. Reducing Bat Fatalities Using Ultrasonic Acoustic Deterrent Technology: A Potential Mechanism for Conservation at Offshore Wind Energy Sites. Master's thesis, Harvard Extension School. https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37365062 Bats wind energy conservation offshore wind energy Thesis or Dissertation text 2020 ftharvardudash 2022-04-04T11:36:55Z In 2018, wind energy grew 12% globally in response to offset greenhouse gas emissions (IEA, 2019). While land-based wind projects (LBW) still dominate the supply chain, offshore-based wind projects (OBW) are becoming more prevalent. With this increase in wind energy deployment, the probability of increased wildlife conflict also increases, particularly with bats. Wind turbines can impact certain bat species from collision events, especially during seasonal migration movements. Twenty-three of the 47 US bat species have been found as representative fatalities at LBW (AWWI, 2018). Bats and wind turbines are now unfortunately connected, due to the increase in wind turbine placements in bat migration and foraging corridors. Insectivorous bats are echolocating mammals that use ultrasonic frequencies to hunt and avoid obstacles in air space. Technology such as ultrasonic acoustic deterrents (UAD) devices that emit high frequency sound, have been used on LBW projects with mixed but generally positive results. UADs placed on wind turbines that cause echolocation disorientation within ensonified areas can help divert bats from wind energy turbine air space and help to reduce bat related collision fatalities. The objectives of this project were to identify mitigative steps to reduce bat fatalities at OBW using information gathered from LBW that have employed UADs. It was hypothesized that UAD deployment at wind energy facilities could reduce bat fatalities. A secondary objective was to determine abiotic factors that had effects on bat activity around wind turbines. A third objective was to use two echolocating mammals as proxy parameter comparisons to see if UADs would deter both groups of species from ensonfied areas similarly: bats and toothed whales (odontocetes). My assumptions were that UADs were effective at deterring bats from the ensonified areas of wind turbines and that high wind velocities, low barometric pressure and decreasing temperatures during seasonal migrations altered bat activity around wind turbines. Any successes from odontocete stranding event mitigation using aquatic UADs can be used as support for another echolocating mammal reacting to UAD use for deterrence from ensonified areas. I analyzed proprietary and published data based on field tested bat studies using UADs at several North American LBW, in collaboration with several wind energy organizations. Using generalized mixed modeling (GLMM), I identified abiotic variables that influence how and when bats interact with LBW. I compared these factors to wind energy sites that deployed UADs on some turbines and others were used as controls. As a smaller, secondary comparison, I evaluated odontocete stranding event data that deployed UADs to test if there was a feasible comparison proxy between two types of potential fatality events involving echolocating mammal species. For the first model, the GLMM results showed that presence of operational UADs on LBW treatment wind turbines was statistically significant (p <0.001) at reducing bat fatality events when compared to control wind turbines. For the second model, there was no statistically significant effects from any of the three abiotic variables on bat fatality reductions at treated LBW turbines. However, in model 3, average nightly wind speed was statistically significant at control LBW turbines. Due to insufficient data on odontocete stranding events and UAD deployment, this proxy was only used as anecdotal information. The results indicate that UADs are effective deterrents for reducing bat fatality events at LBW. Results also showed that wind speed was significant at wind turbines without deterrent technology. Nightly wind speed can act as an abiotic predictor variable on how bat activity reacts at LBW turbines. When looking to guide mitigative language for OBW, deploying UADs and monitoring for bat activity based on nightly wind fluctuations can influence bat fatality events. Sustainability Thesis toothed whales Harvard University: DASH - Digital Access to Scholarship at Harvard