Simulation data for tracing snowball bifurcation on an earth-like aquaplanet over 4 billion years

Abstract The atmospheric concentration of CO2 at which global glaciation (snowball) bifurcation occurs, changes throughout Earth's history, most notably because of the slowly increasing solar luminosity. Quantifying this critical CO2 concentration is not only interesting from a climate dynamics...

Full description

Bibliographic Details
Main Authors: Feulner, Georg, Bukenberger, Mona Sofie, Petri, Stefan
Format: Dataset
Language:unknown
Published: GFZ Data Services 2022
Subjects:
Online Access:https://doi.org/10.5880/PIK.2022.003
id ftgfzpotsdamdata:oai:doidb.wdc-terra.org:7729
record_format openpolar
institution Open Polar
collection GFZ Data Services (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)
op_collection_id ftgfzpotsdamdata
language unknown
topic paleoclimate
Snowball Earth
global glaciation
snowball bifurcation
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > GLACIATION
EARTH SCIENCE SERVICES > MODELS > COUPLED CLIMATE MODELS
spellingShingle paleoclimate
Snowball Earth
global glaciation
snowball bifurcation
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > GLACIATION
EARTH SCIENCE SERVICES > MODELS > COUPLED CLIMATE MODELS
Feulner, Georg
Bukenberger, Mona Sofie
Petri, Stefan
Simulation data for tracing snowball bifurcation on an earth-like aquaplanet over 4 billion years
topic_facet paleoclimate
Snowball Earth
global glaciation
snowball bifurcation
EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > GLACIATION
EARTH SCIENCE SERVICES > MODELS > COUPLED CLIMATE MODELS
description Abstract The atmospheric concentration of CO2 at which global glaciation (snowball) bifurcation occurs, changes throughout Earth's history, most notably because of the slowly increasing solar luminosity. Quantifying this critical CO2 concentration is not only interesting from a climate dynamics perspective, but also an important prerequisite for understanding past Snowball Earth episodes as well as the conditions for habitability on Earth and other planets. Here we use the coupled climate model CLIMBER-3α in an Aquaplanet configuration to scan for the Snowball bifurcation point for time slices spanning the last 4 billion years, thus quantifying the time evolution of the bifurcation and identifying a qualitative shift in critical state dynamics. Methods To scan for the Snowball bifurcation for more than a dozen time slices throughout Earth’s history, we use the relatively fast Earth-system model of intermediate complexity CLIMBER-3α. It consists of a modified version of the ocean general circulation model (OGCM) MOM3 with a horizontal resolution of 3.75◦× 3.75◦ and 24 vertical levels, a dynamic/thermodynamic sea-ice model the same horizontal resolution and a fast statistical-dynamical atmosphere model with a coarse horizontal resolution of 22.5◦ in longitude and 7.5◦ in latitude. The sea-ice model explicitly takes into account sea-ice dynamics, a factor which has been found to be of crucial importance for the Snowball bifurcation. The effects of snow cover on sea ice are explicitly taken into account. The main limitations of the model relate to its simplified atmosphere component. For more details see the corresponding paper.
author2 Feulner, Georg
Bukenberger, Mona Sofie
Petri, Stefan
format Dataset
author Feulner, Georg
Bukenberger, Mona Sofie
Petri, Stefan
author_facet Feulner, Georg
Bukenberger, Mona Sofie
Petri, Stefan
author_sort Feulner, Georg
title Simulation data for tracing snowball bifurcation on an earth-like aquaplanet over 4 billion years
title_short Simulation data for tracing snowball bifurcation on an earth-like aquaplanet over 4 billion years
title_full Simulation data for tracing snowball bifurcation on an earth-like aquaplanet over 4 billion years
title_fullStr Simulation data for tracing snowball bifurcation on an earth-like aquaplanet over 4 billion years
title_full_unstemmed Simulation data for tracing snowball bifurcation on an earth-like aquaplanet over 4 billion years
title_sort simulation data for tracing snowball bifurcation on an earth-like aquaplanet over 4 billion years
publisher GFZ Data Services
publishDate 2022
url https://doi.org/10.5880/PIK.2022.003
op_coverage 18 time slices from today over 3600 Ma
-180 180 -90 90
genre Sea ice
genre_facet Sea ice
op_relation doi:10.1089/ast.2010.0545
doi:10.1007/s00382-001-0198-4
doi:10.1051/0004-6361:20020749
doi:10.1111/j.2153-3490.1969.tb00466.x
doi:10.1175/1520-0469(1977)034<1696:otbsod>2.0.co;2
doi:10.1029/2000JD900221
doi:10.1002/jgrd.50808
doi:10.1007/s11214-020-00711-9
doi:10.1007/s00382-001-0200-1
doi:10.1007/s00382-003-0378-5
doi:10.1175/1520-0469(1976)033<0003:csfast>2.0.co;2
doi:10.1016/j.precamres.2011.04.003
doi:10.1175/1520-0450(1972)011<0004:aimote>2.0.co;2
doi:10.1029/2011GL048529
doi:10.1029/2011RG000375
doi:10.1073/pnas.1712062114
doi:10.1016/j.epsl.2014.08.001
doi:10.1038/ngeo2523
doi:10.1029/97JC00480
doi:10.1130/G38682.1
doi:10.1038/ncomms14845
doi:10.1029/2007GL031115
doi:10.3402/tellusa.v28i2.10261
doi:10.1007/BF00151270
doi:10.5194/cp-5-785-2009
doi:10.3402/tellusa.v26i6.9870
doi:10.1038/nature02471
doi:10.1046/j.1365-3121.2002.00408.x
doi:10.1029/2005JC003279
doi:10.1007/BF00206862
doi:10.1002/2014JD022466
doi:10.1029/1998GL900298
doi:10.1016/j.gca.2015.03.011
doi:10.1016/0301-9268(87)90001-5
doi:10.1029/2012GL054381
doi:10.5194/cp-9-1841-2013
doi:10.1029/2010GL045777
doi:10.1016/j.pss.2013.09.011
doi:10.5194/cp-10-697-2014
doi:10.1126/sciadv.aay4644
doi:10.1029/2003PA000926
doi:10.1029/2006JC004037
doi:10.1175/1520-0469(1977)034<1487:srmosc>2.0.co;2
doi:10.5194/cp-9-2555-2013
doi:10.1007/s00382-016-3278-1
doi:10.1007/s00382-005-0044-1
doi:10.1175/1520-0469(1975)032<1301:astasc>2.0.co;2
doi:10.1175/1520-0469(1975)032<2033:toebcm>2.0.co;2
doi:10.1016/0921-8181(90)90003-U
doi:10.1175/1520-0469(1979)036<1189:dbsama>2.0.co;2
op_rights CC BY 4.0
http://creativecommons.org/licenses/by/4.0/
op_doi https://doi.org/10.5880/PIK.2022.00310.1089/ast.2010.054510.1007/s00382-001-0198-410.1051/0004-6361:2002074910.1111/j.2153-3490.1969.tb00466.x10.1175/1520-0469(1977)034<1696:otbsod>2.0.co;210.1029/2000JD90022110.1002/jgrd.5080810.1007/s11214-020-00711-910
_version_ 1766191678921637888
spelling ftgfzpotsdamdata:oai:doidb.wdc-terra.org:7729 2023-05-15T18:17:27+02:00 Simulation data for tracing snowball bifurcation on an earth-like aquaplanet over 4 billion years Feulner, Georg Bukenberger, Mona Sofie Petri, Stefan Feulner, Georg Bukenberger, Mona Sofie Petri, Stefan 18 time slices from today over 3600 Ma -180 180 -90 90 2022 https://doi.org/10.5880/PIK.2022.003 unknown GFZ Data Services doi:10.1089/ast.2010.0545 doi:10.1007/s00382-001-0198-4 doi:10.1051/0004-6361:20020749 doi:10.1111/j.2153-3490.1969.tb00466.x doi:10.1175/1520-0469(1977)034<1696:otbsod>2.0.co;2 doi:10.1029/2000JD900221 doi:10.1002/jgrd.50808 doi:10.1007/s11214-020-00711-9 doi:10.1007/s00382-001-0200-1 doi:10.1007/s00382-003-0378-5 doi:10.1175/1520-0469(1976)033<0003:csfast>2.0.co;2 doi:10.1016/j.precamres.2011.04.003 doi:10.1175/1520-0450(1972)011<0004:aimote>2.0.co;2 doi:10.1029/2011GL048529 doi:10.1029/2011RG000375 doi:10.1073/pnas.1712062114 doi:10.1016/j.epsl.2014.08.001 doi:10.1038/ngeo2523 doi:10.1029/97JC00480 doi:10.1130/G38682.1 doi:10.1038/ncomms14845 doi:10.1029/2007GL031115 doi:10.3402/tellusa.v28i2.10261 doi:10.1007/BF00151270 doi:10.5194/cp-5-785-2009 doi:10.3402/tellusa.v26i6.9870 doi:10.1038/nature02471 doi:10.1046/j.1365-3121.2002.00408.x doi:10.1029/2005JC003279 doi:10.1007/BF00206862 doi:10.1002/2014JD022466 doi:10.1029/1998GL900298 doi:10.1016/j.gca.2015.03.011 doi:10.1016/0301-9268(87)90001-5 doi:10.1029/2012GL054381 doi:10.5194/cp-9-1841-2013 doi:10.1029/2010GL045777 doi:10.1016/j.pss.2013.09.011 doi:10.5194/cp-10-697-2014 doi:10.1126/sciadv.aay4644 doi:10.1029/2003PA000926 doi:10.1029/2006JC004037 doi:10.1175/1520-0469(1977)034<1487:srmosc>2.0.co;2 doi:10.5194/cp-9-2555-2013 doi:10.1007/s00382-016-3278-1 doi:10.1007/s00382-005-0044-1 doi:10.1175/1520-0469(1975)032<1301:astasc>2.0.co;2 doi:10.1175/1520-0469(1975)032<2033:toebcm>2.0.co;2 doi:10.1016/0921-8181(90)90003-U doi:10.1175/1520-0469(1979)036<1189:dbsama>2.0.co;2 CC BY 4.0 http://creativecommons.org/licenses/by/4.0/ paleoclimate Snowball Earth global glaciation snowball bifurcation EARTH SCIENCE > PALEOCLIMATE > LAND RECORDS > GLACIATION EARTH SCIENCE SERVICES > MODELS > COUPLED CLIMATE MODELS Dataset 2022 ftgfzpotsdamdata https://doi.org/10.5880/PIK.2022.00310.1089/ast.2010.054510.1007/s00382-001-0198-410.1051/0004-6361:2002074910.1111/j.2153-3490.1969.tb00466.x10.1175/1520-0469(1977)034<1696:otbsod>2.0.co;210.1029/2000JD90022110.1002/jgrd.5080810.1007/s11214-020-00711-910 2023-04-09T23:37:27Z Abstract The atmospheric concentration of CO2 at which global glaciation (snowball) bifurcation occurs, changes throughout Earth's history, most notably because of the slowly increasing solar luminosity. Quantifying this critical CO2 concentration is not only interesting from a climate dynamics perspective, but also an important prerequisite for understanding past Snowball Earth episodes as well as the conditions for habitability on Earth and other planets. Here we use the coupled climate model CLIMBER-3α in an Aquaplanet configuration to scan for the Snowball bifurcation point for time slices spanning the last 4 billion years, thus quantifying the time evolution of the bifurcation and identifying a qualitative shift in critical state dynamics. Methods To scan for the Snowball bifurcation for more than a dozen time slices throughout Earth’s history, we use the relatively fast Earth-system model of intermediate complexity CLIMBER-3α. It consists of a modified version of the ocean general circulation model (OGCM) MOM3 with a horizontal resolution of 3.75◦× 3.75◦ and 24 vertical levels, a dynamic/thermodynamic sea-ice model the same horizontal resolution and a fast statistical-dynamical atmosphere model with a coarse horizontal resolution of 22.5◦ in longitude and 7.5◦ in latitude. The sea-ice model explicitly takes into account sea-ice dynamics, a factor which has been found to be of crucial importance for the Snowball bifurcation. The effects of snow cover on sea ice are explicitly taken into account. The main limitations of the model relate to its simplified atmosphere component. For more details see the corresponding paper. Dataset Sea ice GFZ Data Services (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)