3D-CEBS-TTH: transient thermohydraulic model of the Central European Basin System (CEBS)

Abstract We provide a single file (exodus II format) that contains all results of the modeling efforts of the associated paper. This encompasses all structural information as well as the pore pressure, temperature, and fluid velocity distribution through time. We also supply all files necessary to r...

Full description

Bibliographic Details
Main Authors: Frick, Maximilian, Cacace, Mauro, Klemann, Volker, Tarasov, Lev, Scheck-Wenderoth, Magdalena
Other Authors: Maystrenko, Yuri
Format: Dataset
Language:unknown
Published: GFZ Data Services 2021
Subjects:
ESM
Online Access:https://doi.org/10.5880/GFZ.4.5.2021.003
id ftgfzpotsdamdata:oai:doidb.wdc-terra.org:7349
record_format openpolar
institution Open Polar
collection GFZ Data Services (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)
op_collection_id ftgfzpotsdamdata
language unknown
topic Central Europe
3D Model
Glaciation
subsurface geology
tectonostratigraphic units
formation tops
layer thickness
sedimentary cover
basement rocks
crystalline crust
lithospheric mantle
Northeast German Basin
Central European Basin System
Thermohydraulic Coupling
Nuclear Waste
Transient Process Modelling
Disequilibrium
Climate Change
Paleoclimate
Advanced Earth System Modelling Capacity
ESM
compound material
EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER ELEVATION/ICE SHEET ELEVATION
EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER/ICE SHEET THICKNESS
EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER/ICE SHEET TOPOGRAPHY
EARTH SCIENCE > CLIMATE INDICATORS > PALEOCLIMATE INDICATORS > LAND RECORDS > SEDIMENTS > SEDIMENT THICKNESS
EARTH SCIENCE > LAND SURFACE > GEOMORPHOLOGY > GLACIAL LANDFORMS/PROCESSES
EARTH SCIENCE > PALEOCLIMATE
EARTH SCIENCE > SOLID EARTH > ROCKS/MINERALS/CRYSTALS > BEDROCK LITHOLOGY
EARTH SCIENCE SERVICES > MODELS > EARTH SCIENCE REANALYSES/ASSIMILATION MODELS
EARTH SCIENCE SERVICES > MODELS > GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
information > geo-referenced information
lithosphere > earth's crust > sedimentary basin
Phanerozoic
science > natural science > atmospheric science > climatology > palaeoclimatology
science > natural science > earth science > geology
science > natural science > earth science > geology > hydrogeology
science > natural science > earth science > geophysics
The Present
spellingShingle Central Europe
3D Model
Glaciation
subsurface geology
tectonostratigraphic units
formation tops
layer thickness
sedimentary cover
basement rocks
crystalline crust
lithospheric mantle
Northeast German Basin
Central European Basin System
Thermohydraulic Coupling
Nuclear Waste
Transient Process Modelling
Disequilibrium
Climate Change
Paleoclimate
Advanced Earth System Modelling Capacity
ESM
compound material
EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER ELEVATION/ICE SHEET ELEVATION
EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER/ICE SHEET THICKNESS
EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER/ICE SHEET TOPOGRAPHY
EARTH SCIENCE > CLIMATE INDICATORS > PALEOCLIMATE INDICATORS > LAND RECORDS > SEDIMENTS > SEDIMENT THICKNESS
EARTH SCIENCE > LAND SURFACE > GEOMORPHOLOGY > GLACIAL LANDFORMS/PROCESSES
EARTH SCIENCE > PALEOCLIMATE
EARTH SCIENCE > SOLID EARTH > ROCKS/MINERALS/CRYSTALS > BEDROCK LITHOLOGY
EARTH SCIENCE SERVICES > MODELS > EARTH SCIENCE REANALYSES/ASSIMILATION MODELS
EARTH SCIENCE SERVICES > MODELS > GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
information > geo-referenced information
lithosphere > earth's crust > sedimentary basin
Phanerozoic
science > natural science > atmospheric science > climatology > palaeoclimatology
science > natural science > earth science > geology
science > natural science > earth science > geology > hydrogeology
science > natural science > earth science > geophysics
The Present
Frick, Maximilian
Cacace, Mauro
Klemann, Volker
Tarasov, Lev
Scheck-Wenderoth, Magdalena
3D-CEBS-TTH: transient thermohydraulic model of the Central European Basin System (CEBS)
topic_facet Central Europe
3D Model
Glaciation
subsurface geology
tectonostratigraphic units
formation tops
layer thickness
sedimentary cover
basement rocks
crystalline crust
lithospheric mantle
Northeast German Basin
Central European Basin System
Thermohydraulic Coupling
Nuclear Waste
Transient Process Modelling
Disequilibrium
Climate Change
Paleoclimate
Advanced Earth System Modelling Capacity
ESM
compound material
EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER ELEVATION/ICE SHEET ELEVATION
EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER/ICE SHEET THICKNESS
EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER/ICE SHEET TOPOGRAPHY
EARTH SCIENCE > CLIMATE INDICATORS > PALEOCLIMATE INDICATORS > LAND RECORDS > SEDIMENTS > SEDIMENT THICKNESS
EARTH SCIENCE > LAND SURFACE > GEOMORPHOLOGY > GLACIAL LANDFORMS/PROCESSES
EARTH SCIENCE > PALEOCLIMATE
EARTH SCIENCE > SOLID EARTH > ROCKS/MINERALS/CRYSTALS > BEDROCK LITHOLOGY
EARTH SCIENCE SERVICES > MODELS > EARTH SCIENCE REANALYSES/ASSIMILATION MODELS
EARTH SCIENCE SERVICES > MODELS > GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
information > geo-referenced information
lithosphere > earth's crust > sedimentary basin
Phanerozoic
science > natural science > atmospheric science > climatology > palaeoclimatology
science > natural science > earth science > geology
science > natural science > earth science > geology > hydrogeology
science > natural science > earth science > geophysics
The Present
description Abstract We provide a single file (exodus II format) that contains all results of the modeling efforts of the associated paper. This encompasses all structural information as well as the pore pressure, temperature, and fluid velocity distribution through time. We also supply all files necessary to rerun the simulation, resulting in the aforementioned output file. The model area covers a rectangular area around the Central European Basin System (Maystrenko et al., 2020). The data publication is compeiment to Frick et al., (2021). The file published here is based on the structural model after Maystrenko et al., (2020) which resolves 16 geological units. More details about the structure and how it was derived can be found in Maystrenko et al., (2020). The file presented contains information on the regional variation of the pore pressure, temperature and fluid velocity of the model area in 3D. This information is presented for 364 time steps starting from 43,000 years before present and ending at 310000 years after present. This model was created as part of the ESM project (Advanced Earth System Modelling Capacity; https://www.esm-project.net). This project looks at the development of a flexible framework for the effective coupling of Earth system model components. In this, we focused on the coupling between atmosphere and the subsurface by simulating the response of glacial loading, in terms of thermal and hydraulic forcing, on the hydrodynamics and thermics of the geological subsurface of Central Europe. For this endeavor, we populated the 3D structural model by Maystrenko and Coauthors (2020) with rock physical properties, applied a set of boundary conditions and simulated the transient 3D thermohydraulics of the subsurface. More details about this can be found in the accompanying paper (Frick et al., 2021) Methods For creating this 3D structural model numerous datasets have been integrated. For this we first visualized all data, that is geological cross-sections, drilled well tops, water depths, seismic lines and larger scale models using the commercial software Petrel (©Schlumberger). We then split those datasets into the desired output horizons, removing inconsistencies between them, and using the scattered information of each of the units top elevations to interpolate to regular grids. This was done by the convergent interpolation algorithm of Petrel and a regular grid resolution of 100 m. Especially for the deeper units where only sparse information can be obtained from drilled well tops, we relied on existing models of the Central European Basin System and of the Northeast German Basin which integrated all available GDR seismic lines and are gravity constrained. These have been used along with the 3D Brandenburg model to provide the carcass for the model where no local information was available. Therefore, the crust, mantle and Pre-Permian sediment configuration was derived from larger scale models. For the overlying model units available deep seismic lines along with all deep wells were integrated. For the shallower model units (i.e. Cenozoic) highly resolved geological cross-sections and a dense population of wells were integrated along with the seismic lines. In a final step, high resolution data of the topography (i.e. lake surface and earth surface) were combined with lake bathymetry data to derive the geological surface of the model. TechnicalInfo The grids provided are space separated ascii files for a) the elevation of the top and b) the thickness of each unit, with their structure being identical. The columns for a) are 1: x-coordinate, 2: y-coordinate, and 3: elevation (meter above sea level). For b) the columns are 1: x-coordinate, 2: y-coordinate, and 3: thickness (meter). The horizontal dimensions are 43.5 x 53 km. The resolution of the files is identical, each having a spacing of 100 m. The associated coordinate system is Gauß-Krüger DHDN Zone 4. The naming of the files includes the layer name (geological unit) as well as a number representing the structural position in the model in ascending order. Hence, recomposing the model one would have to order the grids by ascending number to build the model from top to bottom. The vertical resolution of the model is heterogeneous since model units have heterogeneous distributions. A thickness of "0" is denoted where the unit is absent.
author2 Frick, Maximilian
Cacace, Mauro
Klemann, Volker
Tarasov, Lev
Scheck-Wenderoth, Magdalena
Maystrenko, Yuri
format Dataset
author Frick, Maximilian
Cacace, Mauro
Klemann, Volker
Tarasov, Lev
Scheck-Wenderoth, Magdalena
author_facet Frick, Maximilian
Cacace, Mauro
Klemann, Volker
Tarasov, Lev
Scheck-Wenderoth, Magdalena
author_sort Frick, Maximilian
title 3D-CEBS-TTH: transient thermohydraulic model of the Central European Basin System (CEBS)
title_short 3D-CEBS-TTH: transient thermohydraulic model of the Central European Basin System (CEBS)
title_full 3D-CEBS-TTH: transient thermohydraulic model of the Central European Basin System (CEBS)
title_fullStr 3D-CEBS-TTH: transient thermohydraulic model of the Central European Basin System (CEBS)
title_full_unstemmed 3D-CEBS-TTH: transient thermohydraulic model of the Central European Basin System (CEBS)
title_sort 3d-cebs-tth: transient thermohydraulic model of the central european basin system (cebs)
publisher GFZ Data Services
publishDate 2021
url https://doi.org/10.5880/GFZ.4.5.2021.003
op_coverage temporal coverage: 43,000 years before present 310,000 years after present
-4.386 26.92 49.667 59.3
genre Ice Sheet
genre_facet Ice Sheet
op_relation url:https://dl.acm.org/doi/book/10.5555/2789330
doi:10.5194/se-8-921-2017
doi:10.5194/adgeo-49-9-2019
doi:10.1155/2019/4129016
doi:10.1007/s12665-013-2249-7
doi:10.3390/en12112081
doi:10.5880/GFZ.4.5.2020.006
doi:10.1016/j.epsl.2011.09.010
doi:10.1046/j.1365-246X.2002.01702.x
doi:10.3389/frwa.2022.818469
url:https://www.esm-project.net
http://dx.doi.org/10.5880/GFZ.4.5.2021.003
doi:10.5880/GFZ.4.5.2021.003
op_rights CC BY 4.0
http://creativecommons.org/licenses/by/4.0/
op_rightsnorm CC-BY
op_doi https://doi.org/10.5880/GFZ.4.5.2021.003
https://doi.org/10.5194/se-8-921-2017
https://doi.org/10.5194/adgeo-49-9-2019
https://doi.org/10.1155/2019/4129016
https://doi.org/10.1007/s12665-013-2249-7
https://doi.org/10.3390/en12112081
https://do
_version_ 1766031722766401536
spelling ftgfzpotsdamdata:oai:doidb.wdc-terra.org:7349 2023-05-15T16:41:17+02:00 3D-CEBS-TTH: transient thermohydraulic model of the Central European Basin System (CEBS) Frick, Maximilian Cacace, Mauro Klemann, Volker Tarasov, Lev Scheck-Wenderoth, Magdalena Frick, Maximilian Cacace, Mauro Klemann, Volker Tarasov, Lev Scheck-Wenderoth, Magdalena Maystrenko, Yuri temporal coverage: 43,000 years before present 310,000 years after present -4.386 26.92 49.667 59.3 2021 https://doi.org/10.5880/GFZ.4.5.2021.003 unknown GFZ Data Services url:https://dl.acm.org/doi/book/10.5555/2789330 doi:10.5194/se-8-921-2017 doi:10.5194/adgeo-49-9-2019 doi:10.1155/2019/4129016 doi:10.1007/s12665-013-2249-7 doi:10.3390/en12112081 doi:10.5880/GFZ.4.5.2020.006 doi:10.1016/j.epsl.2011.09.010 doi:10.1046/j.1365-246X.2002.01702.x doi:10.3389/frwa.2022.818469 url:https://www.esm-project.net http://dx.doi.org/10.5880/GFZ.4.5.2021.003 doi:10.5880/GFZ.4.5.2021.003 CC BY 4.0 http://creativecommons.org/licenses/by/4.0/ CC-BY Central Europe 3D Model Glaciation subsurface geology tectonostratigraphic units formation tops layer thickness sedimentary cover basement rocks crystalline crust lithospheric mantle Northeast German Basin Central European Basin System Thermohydraulic Coupling Nuclear Waste Transient Process Modelling Disequilibrium Climate Change Paleoclimate Advanced Earth System Modelling Capacity ESM compound material EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER ELEVATION/ICE SHEET ELEVATION EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER/ICE SHEET THICKNESS EARTH SCIENCE > CLIMATE INDICATORS > CRYOSPHERIC INDICATORS > GLACIAL MEASUREMENTS > GLACIER/ICE SHEET TOPOGRAPHY EARTH SCIENCE > CLIMATE INDICATORS > PALEOCLIMATE INDICATORS > LAND RECORDS > SEDIMENTS > SEDIMENT THICKNESS EARTH SCIENCE > LAND SURFACE > GEOMORPHOLOGY > GLACIAL LANDFORMS/PROCESSES EARTH SCIENCE > PALEOCLIMATE EARTH SCIENCE > SOLID EARTH > ROCKS/MINERALS/CRYSTALS > BEDROCK LITHOLOGY EARTH SCIENCE SERVICES > MODELS > EARTH SCIENCE REANALYSES/ASSIMILATION MODELS EARTH SCIENCE SERVICES > MODELS > GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS information > geo-referenced information lithosphere > earth's crust > sedimentary basin Phanerozoic science > natural science > atmospheric science > climatology > palaeoclimatology science > natural science > earth science > geology science > natural science > earth science > geology > hydrogeology science > natural science > earth science > geophysics The Present Dataset 2021 ftgfzpotsdamdata https://doi.org/10.5880/GFZ.4.5.2021.003 https://doi.org/10.5194/se-8-921-2017 https://doi.org/10.5194/adgeo-49-9-2019 https://doi.org/10.1155/2019/4129016 https://doi.org/10.1007/s12665-013-2249-7 https://doi.org/10.3390/en12112081 https://do 2022-05-08T23:29:24Z Abstract We provide a single file (exodus II format) that contains all results of the modeling efforts of the associated paper. This encompasses all structural information as well as the pore pressure, temperature, and fluid velocity distribution through time. We also supply all files necessary to rerun the simulation, resulting in the aforementioned output file. The model area covers a rectangular area around the Central European Basin System (Maystrenko et al., 2020). The data publication is compeiment to Frick et al., (2021). The file published here is based on the structural model after Maystrenko et al., (2020) which resolves 16 geological units. More details about the structure and how it was derived can be found in Maystrenko et al., (2020). The file presented contains information on the regional variation of the pore pressure, temperature and fluid velocity of the model area in 3D. This information is presented for 364 time steps starting from 43,000 years before present and ending at 310000 years after present. This model was created as part of the ESM project (Advanced Earth System Modelling Capacity; https://www.esm-project.net). This project looks at the development of a flexible framework for the effective coupling of Earth system model components. In this, we focused on the coupling between atmosphere and the subsurface by simulating the response of glacial loading, in terms of thermal and hydraulic forcing, on the hydrodynamics and thermics of the geological subsurface of Central Europe. For this endeavor, we populated the 3D structural model by Maystrenko and Coauthors (2020) with rock physical properties, applied a set of boundary conditions and simulated the transient 3D thermohydraulics of the subsurface. More details about this can be found in the accompanying paper (Frick et al., 2021) Methods For creating this 3D structural model numerous datasets have been integrated. For this we first visualized all data, that is geological cross-sections, drilled well tops, water depths, seismic lines and larger scale models using the commercial software Petrel (©Schlumberger). We then split those datasets into the desired output horizons, removing inconsistencies between them, and using the scattered information of each of the units top elevations to interpolate to regular grids. This was done by the convergent interpolation algorithm of Petrel and a regular grid resolution of 100 m. Especially for the deeper units where only sparse information can be obtained from drilled well tops, we relied on existing models of the Central European Basin System and of the Northeast German Basin which integrated all available GDR seismic lines and are gravity constrained. These have been used along with the 3D Brandenburg model to provide the carcass for the model where no local information was available. Therefore, the crust, mantle and Pre-Permian sediment configuration was derived from larger scale models. For the overlying model units available deep seismic lines along with all deep wells were integrated. For the shallower model units (i.e. Cenozoic) highly resolved geological cross-sections and a dense population of wells were integrated along with the seismic lines. In a final step, high resolution data of the topography (i.e. lake surface and earth surface) were combined with lake bathymetry data to derive the geological surface of the model. TechnicalInfo The grids provided are space separated ascii files for a) the elevation of the top and b) the thickness of each unit, with their structure being identical. The columns for a) are 1: x-coordinate, 2: y-coordinate, and 3: elevation (meter above sea level). For b) the columns are 1: x-coordinate, 2: y-coordinate, and 3: thickness (meter). The horizontal dimensions are 43.5 x 53 km. The resolution of the files is identical, each having a spacing of 100 m. The associated coordinate system is Gauß-Krüger DHDN Zone 4. The naming of the files includes the layer name (geological unit) as well as a number representing the structural position in the model in ascending order. Hence, recomposing the model one would have to order the grids by ascending number to build the model from top to bottom. The vertical resolution of the model is heterogeneous since model units have heterogeneous distributions. A thickness of "0" is denoted where the unit is absent. Dataset Ice Sheet GFZ Data Services (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)