Predicted relative sea-level and sea-level data for validation

Abstract We provide the model results of the manuscript "Glacial-isostatic adjustment models using geodynamically constrained 3D Earth structures" (Bagge et al. 2020, Paper) including the (1) predicted relative sea-level and (2) applied sea-level data. The predicted relative-sea level is c...

Full description

Bibliographic Details
Main Authors: Bagge, Meike, Klemann, Volker, Steinberger, Bernhard, Latinović, Milena, Thomas, Maik
Format: Dataset
Language:unknown
Published: GFZ Data Services 2020
Subjects:
Online Access:https://doi.org/10.5880/GFZ.1.3.2020.005
id ftgfzpotsdamdata:oai:doidb.wdc-terra.org:7224
record_format openpolar
institution Open Polar
collection GFZ Data Services (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)
op_collection_id ftgfzpotsdamdata
language unknown
topic laterally varying Earth structure
glacial-isostatic adjustment
relative sea-level
VIscoelastic Lithosphere and MAntle model
VILMA
EARTH SCIENCE SERVICES > MODELS > CRYOSPHERE MODELS
EARTH SCIENCE SERVICES > MODELS > GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
spellingShingle laterally varying Earth structure
glacial-isostatic adjustment
relative sea-level
VIscoelastic Lithosphere and MAntle model
VILMA
EARTH SCIENCE SERVICES > MODELS > CRYOSPHERE MODELS
EARTH SCIENCE SERVICES > MODELS > GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
Bagge, Meike
Klemann, Volker
Steinberger, Bernhard
Latinović, Milena
Thomas, Maik
Predicted relative sea-level and sea-level data for validation
topic_facet laterally varying Earth structure
glacial-isostatic adjustment
relative sea-level
VIscoelastic Lithosphere and MAntle model
VILMA
EARTH SCIENCE SERVICES > MODELS > CRYOSPHERE MODELS
EARTH SCIENCE SERVICES > MODELS > GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS
description Abstract We provide the model results of the manuscript "Glacial-isostatic adjustment models using geodynamically constrained 3D Earth structures" (Bagge et al. 2020, Paper) including the (1) predicted relative sea-level and (2) applied sea-level data. The predicted relative-sea level is calculated with the VIscoelastic Lithosphere and MAntle model VILMA (Klemann et al. 2008, 2015, Martinec et al. 2018, Hagedoorn et al. 2007, Martinec & Hagedoorn 2005, Kendall et al. 2005). The glacial-isostatic adjustment models uses different Earth structures (3D, 1D global mean and 1D regionally adapted; Bagge et al. 2020, Paper; Bagge et al. 2020, https://doi.org/10.5880/GFZ.1.3.2020.004) and ice histories (ICE-5G, Peltier 2004; ICE-6G, Peltier et al. 2015, Argus et al. 2014; NAICE, Gowan et al. 2016) resulting in 44 3D models, 54 1D global mean models and 162 1D regionally adapted models. For more information on model description and input data see Bagge et al. (2020, Paper) and Bagge at al. (2020, https://doi.org/10.5880/GFZ.1.3.2020.004). The provided output data include (1a) the global distribution of predicted relative-sea level at 14 kilo years before present as ensemble range of the 3D GIA models for three ice histories as netCDF files, (1b) the predicted relative-sea level at eight locations at 14 kilo years before present for all models as ASCII file and (1c) the predicted relative sea-level for the deglaciation period for all models as ASCII files. Eight locations include Churchill, Angermanland, Ross Sea (Antarctica), San Jorge Gulf (Patagonia), Central Oregon Coast, Rao-Gandon Area (Senegal), Singapore and Pioneer Bay (Queensland, Australia). (2) The about 520 applied sea-level data provide information on time, relative sea-level and type of sea-level data. They are extracted for the eight locations from the GFZ database using SLIVisu (Unger et al. 2012, 2018) and provided as ACSII files.
author2 Bagge, Meike
format Dataset
author Bagge, Meike
Klemann, Volker
Steinberger, Bernhard
Latinović, Milena
Thomas, Maik
author_facet Bagge, Meike
Klemann, Volker
Steinberger, Bernhard
Latinović, Milena
Thomas, Maik
author_sort Bagge, Meike
title Predicted relative sea-level and sea-level data for validation
title_short Predicted relative sea-level and sea-level data for validation
title_full Predicted relative sea-level and sea-level data for validation
title_fullStr Predicted relative sea-level and sea-level data for validation
title_full_unstemmed Predicted relative sea-level and sea-level data for validation
title_sort predicted relative sea-level and sea-level data for validation
publisher GFZ Data Services
publishDate 2020
url https://doi.org/10.5880/GFZ.1.3.2020.005
long_lat ENVELOPE(-59.828,-59.828,-63.497,-63.497)
ENVELOPE(-63.495,-63.495,-64.854,-64.854)
geographic Kendall
Patagonia
Peltier
Queensland
Ross Sea
geographic_facet Kendall
Patagonia
Peltier
Queensland
Ross Sea
genre Antarc*
Antarctica
Ross Sea
Pioneer Bay
genre_facet Antarc*
Antarctica
Ross Sea
Pioneer Bay
op_relation doi:10.1029/2021GC009853
doi:10.1093/gji/ggu140
doi:10.5880/GFZ.1.3.2020.004
doi:10.1016/j.quascirev.2016.03.003
doi:10.1007/s00024-007-0186-7
doi:10.1111/j.1365-246X.2005.02553.x
doi:10.1007/s41063-015-0004-x
doi:10.1016/j.jog.2008.04.005
doi:10.1111/j.1365-246X.2005.02758.x
doi:10.1093/gji/ggy280
doi:10.1146/annurev.earth.32.082503.144359
doi:10.1002/2014JB011176
doi:10.5880/GFZ.1.5.2018.007
doi:10.1109/TVCG.2012.190
doi:10.1002/jqs.825
doi:10.1130/0091-7613(1994)022%3C0023:APRAHP%3E2.3.CO;2
doi:10.1111/j.1502-3885.2004.tb00995.x
doi:10.1111/j.1502-3885.2007.00005.x
url:http://pid.geoscience.gov.au/dataset/ga/81151
doi:10.1111/j.0435-3676.2000.00123.x
url:https://www.osti.gov/etdeweb/biblio/6500139
doi:10.1017/S0033822200004562
doi:10.1126/science.210.4468.421
doi:10.1038/278441a0
doi:10.1002/(SICI)1099-1417(199912)14:7%3C641::AID-JQS466%3E3.0.CO;2-B
doi:10.1111/j.0435-3676.2000.00128.x
doi:10.1111/j.0435-3676.2000.00127.x
doi:10.1016/j.gloplacha.2003.09.004
url:https://nipr.repo.nii.ac.jp/?action=repository_action_common_download%26item_id=2261%26item_no=1%26attribute_id=18%26file_no=1
doi:10.1126/science.1068105
doi:10.1016/0033-5894(92)90031-D
doi:10.1191/095968398668600476
doi:10.1017/S0033822200020919
doi:10.3133/pp1560_vol1
doi:10.3133/ofr91441C
doi:10.1016/0025-3227(84)90088-4
doi:10.1016/S0277-3791(00)00075-5
url:https://www.jstor.org/stable/4299242
url:http://s3.amazonaws.com/Antarctica/AJUS/AJUSvXIn2/AJUSvXIn2p86.pdf
url:https://www.schweizerbart.de/publications/detail/isbn/9783510960484/Geologisches_Jahrbuch_Reihe_E_Heft
url:https://earthquake.usgs.gov/cfusion/external_grants/reports/08HQGR0076.pdf
url:https://nipr.repo.nii.ac.jp/?action=repository_action_common_download%26item_id=616%26item_no=1%26attribute_id=18%26file_no=1
doi:10.25911/5d74e47990bf7
http://dx.doi.org/10.5880/GFZ.1.3.2020.005
doi:10.5880/GFZ.1.3.2020.005
op_rights CC BY 4.0
http://creativecommons.org/licenses/by/4.0/
op_doi https://doi.org/10.5880/GFZ.1.3.2020.00510.1029/2021GC00985310.1093/gji/ggu14010.5880/GFZ.1.3.2020.00410.1016/j.quascirev.2016.03.00310.1007/s00024-007-0186-710.1111/j.1365-246X.2005.02553.x10.1007/s41063-015-0004-x10.1016/j.jog.2008.04.00510.1111/j.1365-
_version_ 1787425608092876800
spelling ftgfzpotsdamdata:oai:doidb.wdc-terra.org:7224 2024-01-07T09:38:45+01:00 Predicted relative sea-level and sea-level data for validation Bagge, Meike Klemann, Volker Steinberger, Bernhard Latinović, Milena Thomas, Maik Bagge, Meike 2020 https://doi.org/10.5880/GFZ.1.3.2020.005 unknown GFZ Data Services doi:10.1029/2021GC009853 doi:10.1093/gji/ggu140 doi:10.5880/GFZ.1.3.2020.004 doi:10.1016/j.quascirev.2016.03.003 doi:10.1007/s00024-007-0186-7 doi:10.1111/j.1365-246X.2005.02553.x doi:10.1007/s41063-015-0004-x doi:10.1016/j.jog.2008.04.005 doi:10.1111/j.1365-246X.2005.02758.x doi:10.1093/gji/ggy280 doi:10.1146/annurev.earth.32.082503.144359 doi:10.1002/2014JB011176 doi:10.5880/GFZ.1.5.2018.007 doi:10.1109/TVCG.2012.190 doi:10.1002/jqs.825 doi:10.1130/0091-7613(1994)022%3C0023:APRAHP%3E2.3.CO;2 doi:10.1111/j.1502-3885.2004.tb00995.x doi:10.1111/j.1502-3885.2007.00005.x url:http://pid.geoscience.gov.au/dataset/ga/81151 doi:10.1111/j.0435-3676.2000.00123.x url:https://www.osti.gov/etdeweb/biblio/6500139 doi:10.1017/S0033822200004562 doi:10.1126/science.210.4468.421 doi:10.1038/278441a0 doi:10.1002/(SICI)1099-1417(199912)14:7%3C641::AID-JQS466%3E3.0.CO;2-B doi:10.1111/j.0435-3676.2000.00128.x doi:10.1111/j.0435-3676.2000.00127.x doi:10.1016/j.gloplacha.2003.09.004 url:https://nipr.repo.nii.ac.jp/?action=repository_action_common_download%26item_id=2261%26item_no=1%26attribute_id=18%26file_no=1 doi:10.1126/science.1068105 doi:10.1016/0033-5894(92)90031-D doi:10.1191/095968398668600476 doi:10.1017/S0033822200020919 doi:10.3133/pp1560_vol1 doi:10.3133/ofr91441C doi:10.1016/0025-3227(84)90088-4 doi:10.1016/S0277-3791(00)00075-5 url:https://www.jstor.org/stable/4299242 url:http://s3.amazonaws.com/Antarctica/AJUS/AJUSvXIn2/AJUSvXIn2p86.pdf url:https://www.schweizerbart.de/publications/detail/isbn/9783510960484/Geologisches_Jahrbuch_Reihe_E_Heft url:https://earthquake.usgs.gov/cfusion/external_grants/reports/08HQGR0076.pdf url:https://nipr.repo.nii.ac.jp/?action=repository_action_common_download%26item_id=616%26item_no=1%26attribute_id=18%26file_no=1 doi:10.25911/5d74e47990bf7 http://dx.doi.org/10.5880/GFZ.1.3.2020.005 doi:10.5880/GFZ.1.3.2020.005 CC BY 4.0 http://creativecommons.org/licenses/by/4.0/ laterally varying Earth structure glacial-isostatic adjustment relative sea-level VIscoelastic Lithosphere and MAntle model VILMA EARTH SCIENCE SERVICES > MODELS > CRYOSPHERE MODELS EARTH SCIENCE SERVICES > MODELS > GEOLOGIC/TECTONIC/PALEOCLIMATE MODELS Dataset 2020 ftgfzpotsdamdata https://doi.org/10.5880/GFZ.1.3.2020.00510.1029/2021GC00985310.1093/gji/ggu14010.5880/GFZ.1.3.2020.00410.1016/j.quascirev.2016.03.00310.1007/s00024-007-0186-710.1111/j.1365-246X.2005.02553.x10.1007/s41063-015-0004-x10.1016/j.jog.2008.04.00510.1111/j.1365- 2023-12-11T00:44:49Z Abstract We provide the model results of the manuscript "Glacial-isostatic adjustment models using geodynamically constrained 3D Earth structures" (Bagge et al. 2020, Paper) including the (1) predicted relative sea-level and (2) applied sea-level data. The predicted relative-sea level is calculated with the VIscoelastic Lithosphere and MAntle model VILMA (Klemann et al. 2008, 2015, Martinec et al. 2018, Hagedoorn et al. 2007, Martinec & Hagedoorn 2005, Kendall et al. 2005). The glacial-isostatic adjustment models uses different Earth structures (3D, 1D global mean and 1D regionally adapted; Bagge et al. 2020, Paper; Bagge et al. 2020, https://doi.org/10.5880/GFZ.1.3.2020.004) and ice histories (ICE-5G, Peltier 2004; ICE-6G, Peltier et al. 2015, Argus et al. 2014; NAICE, Gowan et al. 2016) resulting in 44 3D models, 54 1D global mean models and 162 1D regionally adapted models. For more information on model description and input data see Bagge et al. (2020, Paper) and Bagge at al. (2020, https://doi.org/10.5880/GFZ.1.3.2020.004). The provided output data include (1a) the global distribution of predicted relative-sea level at 14 kilo years before present as ensemble range of the 3D GIA models for three ice histories as netCDF files, (1b) the predicted relative-sea level at eight locations at 14 kilo years before present for all models as ASCII file and (1c) the predicted relative sea-level for the deglaciation period for all models as ASCII files. Eight locations include Churchill, Angermanland, Ross Sea (Antarctica), San Jorge Gulf (Patagonia), Central Oregon Coast, Rao-Gandon Area (Senegal), Singapore and Pioneer Bay (Queensland, Australia). (2) The about 520 applied sea-level data provide information on time, relative sea-level and type of sea-level data. They are extracted for the eight locations from the GFZ database using SLIVisu (Unger et al. 2012, 2018) and provided as ACSII files. Dataset Antarc* Antarctica Ross Sea Pioneer Bay GFZ Data Services (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam) Kendall ENVELOPE(-59.828,-59.828,-63.497,-63.497) Patagonia Peltier ENVELOPE(-63.495,-63.495,-64.854,-64.854) Queensland Ross Sea