Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems

Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Biogeosciences
Main Authors: Treat, C., Virkkala, A., Burke, E., Bruhwiler, L., Chatterjee, A., Fisher, J., Hashemi, J., Parmentier, F., Rogers, B., Westermann, S., Watts, J., Blanc‐Betes, E., Fuchs, M., Kruse, S., Malhotra, A., Miner, K., Strauss, J., Armstrong, A., Epstein, H., Gay, B., Goeckede, M., Kalhori, A., Kou, D., Miller, C., Natali, S., Oh, Y., Shakil, S., Sonnentag, O., Varner, R., Zolkos, S., Schuur, E., Hugelius, G.
Format: Article in Journal/Newspaper
Language:English
Published: 2024
Subjects:
Online Access:https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025578
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025578_1/component/file_5025635/5025578.pdf
id ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_5025578
record_format openpolar
spelling ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_5025578 2024-05-19T07:36:30+00:00 Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems Treat, C. Virkkala, A. Burke, E. Bruhwiler, L. Chatterjee, A. Fisher, J. Hashemi, J. Parmentier, F. Rogers, B. Westermann, S. Watts, J. Blanc‐Betes, E. Fuchs, M. Kruse, S. Malhotra, A. Miner, K. Strauss, J. Armstrong, A. Epstein, H. Gay, B. Goeckede, M. Kalhori, A. Kou, D. Miller, C. Natali, S. Oh, Y. Shakil, S. Sonnentag, O. Varner, R. Zolkos, S. Schuur, E. Hugelius, G. 2024 application/pdf https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025578 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025578_1/component/file_5025635/5025578.pdf eng eng info:eu-repo/semantics/altIdentifier/doi/10.1029/2023JG007638 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025578 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025578_1/component/file_5025635/5025578.pdf info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/4.0/ Journal of Geophysical Research: Biogeosciences info:eu-repo/semantics/article 2024 ftgfzpotsdam https://doi.org/10.1029/2023JG007638 2024-04-23T23:30:27Z Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2 sink with lower net CO2 uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2 sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4 m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year-round CO2 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non-growing season emissions and disturbance effects. Article in Journal/Newspaper Arctic permafrost Tundra Alaska GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam) Journal of Geophysical Research: Biogeosciences 129 3
institution Open Polar
collection GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)
op_collection_id ftgfzpotsdam
language English
description Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan-Arctic permafrost maps, an increase in terrestrial measurement sites for CO2 and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process-based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2 sink with lower net CO2 uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2 sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4 m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year-round CO2 and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non-growing season emissions and disturbance effects.
format Article in Journal/Newspaper
author Treat, C.
Virkkala, A.
Burke, E.
Bruhwiler, L.
Chatterjee, A.
Fisher, J.
Hashemi, J.
Parmentier, F.
Rogers, B.
Westermann, S.
Watts, J.
Blanc‐Betes, E.
Fuchs, M.
Kruse, S.
Malhotra, A.
Miner, K.
Strauss, J.
Armstrong, A.
Epstein, H.
Gay, B.
Goeckede, M.
Kalhori, A.
Kou, D.
Miller, C.
Natali, S.
Oh, Y.
Shakil, S.
Sonnentag, O.
Varner, R.
Zolkos, S.
Schuur, E.
Hugelius, G.
spellingShingle Treat, C.
Virkkala, A.
Burke, E.
Bruhwiler, L.
Chatterjee, A.
Fisher, J.
Hashemi, J.
Parmentier, F.
Rogers, B.
Westermann, S.
Watts, J.
Blanc‐Betes, E.
Fuchs, M.
Kruse, S.
Malhotra, A.
Miner, K.
Strauss, J.
Armstrong, A.
Epstein, H.
Gay, B.
Goeckede, M.
Kalhori, A.
Kou, D.
Miller, C.
Natali, S.
Oh, Y.
Shakil, S.
Sonnentag, O.
Varner, R.
Zolkos, S.
Schuur, E.
Hugelius, G.
Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems
author_facet Treat, C.
Virkkala, A.
Burke, E.
Bruhwiler, L.
Chatterjee, A.
Fisher, J.
Hashemi, J.
Parmentier, F.
Rogers, B.
Westermann, S.
Watts, J.
Blanc‐Betes, E.
Fuchs, M.
Kruse, S.
Malhotra, A.
Miner, K.
Strauss, J.
Armstrong, A.
Epstein, H.
Gay, B.
Goeckede, M.
Kalhori, A.
Kou, D.
Miller, C.
Natali, S.
Oh, Y.
Shakil, S.
Sonnentag, O.
Varner, R.
Zolkos, S.
Schuur, E.
Hugelius, G.
author_sort Treat, C.
title Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems
title_short Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems
title_full Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems
title_fullStr Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems
title_full_unstemmed Permafrost Carbon: Progress on Understanding Stocks and Fluxes Across Northern Terrestrial Ecosystems
title_sort permafrost carbon: progress on understanding stocks and fluxes across northern terrestrial ecosystems
publishDate 2024
url https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025578
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025578_1/component/file_5025635/5025578.pdf
genre Arctic
permafrost
Tundra
Alaska
genre_facet Arctic
permafrost
Tundra
Alaska
op_source Journal of Geophysical Research: Biogeosciences
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1029/2023JG007638
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025578
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5025578_1/component/file_5025635/5025578.pdf
op_rights info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/4.0/
op_doi https://doi.org/10.1029/2023JG007638
container_title Journal of Geophysical Research: Biogeosciences
container_volume 129
container_issue 3
_version_ 1799475631194374144