Remote forcing for the interannual variability of surface melting events over the Ross Ice Shelf
In the recent decades, the Ross Ice Shelf (RIS) has experienced frequent summer surface melting, which accelerates ice loss and increases the instability of ice sheets. This study links the interannual variability of surface melting events over the RIS with the northerly wind anomaly over the Ross S...
Main Authors: | , , , |
---|---|
Format: | Conference Object |
Language: | English |
Published: |
2023
|
Subjects: | |
Online Access: | https://gfzpublic.gfz-potsdam.de/pubman/item/item_5021448 |
id |
ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_5021448 |
---|---|
record_format |
openpolar |
spelling |
ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_5021448 2023-07-30T03:57:37+02:00 Remote forcing for the interannual variability of surface melting events over the Ross Ice Shelf Fang, Y. Yang, S. Hu, X. Lin, S. 2023-07-11 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5021448 eng eng info:eu-repo/semantics/altIdentifier/doi/10.57757/IUGG23-3064 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5021448 XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) info:eu-repo/semantics/conferenceObject 2023 ftgfzpotsdam https://doi.org/10.57757/IUGG23-3064 2023-07-09T23:40:17Z In the recent decades, the Ross Ice Shelf (RIS) has experienced frequent summer surface melting, which accelerates ice loss and increases the instability of ice sheets. This study links the interannual variability of surface melting events over the RIS with the northerly wind anomaly over the Ross Sea sector, which is established in association with a quasi-geostrophic barotropic Rossby wave train from subtropical Australia toward West Antarctica. The Rossby wave train is regulated jointly by El Niño and atmospheric heating over western Australia. El Niño provides the major forcing of the atmospheric circulation anomalies over the Ross Sea, and most surface melting events over the RIS happened during El Niño years. In addition, the anomalous atmospheric heating over western Australia is identified as the other significant forcing that triggers the Rossby wave train. The northerly flow is sandwiched between the low and high geopotential height anomalies located respectively over the left-hand and right-hand sides of the Ross Sea, favoring strong poleward moisture and heat transport and leading to surface melting over the RIS. Conference Object Antarc* Antarctica Ice Shelf Ross Ice Shelf Ross Sea West Antarctica GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam) Ross Ice Shelf Ross Sea West Antarctica |
institution |
Open Polar |
collection |
GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam) |
op_collection_id |
ftgfzpotsdam |
language |
English |
description |
In the recent decades, the Ross Ice Shelf (RIS) has experienced frequent summer surface melting, which accelerates ice loss and increases the instability of ice sheets. This study links the interannual variability of surface melting events over the RIS with the northerly wind anomaly over the Ross Sea sector, which is established in association with a quasi-geostrophic barotropic Rossby wave train from subtropical Australia toward West Antarctica. The Rossby wave train is regulated jointly by El Niño and atmospheric heating over western Australia. El Niño provides the major forcing of the atmospheric circulation anomalies over the Ross Sea, and most surface melting events over the RIS happened during El Niño years. In addition, the anomalous atmospheric heating over western Australia is identified as the other significant forcing that triggers the Rossby wave train. The northerly flow is sandwiched between the low and high geopotential height anomalies located respectively over the left-hand and right-hand sides of the Ross Sea, favoring strong poleward moisture and heat transport and leading to surface melting over the RIS. |
format |
Conference Object |
author |
Fang, Y. Yang, S. Hu, X. Lin, S. |
spellingShingle |
Fang, Y. Yang, S. Hu, X. Lin, S. Remote forcing for the interannual variability of surface melting events over the Ross Ice Shelf |
author_facet |
Fang, Y. Yang, S. Hu, X. Lin, S. |
author_sort |
Fang, Y. |
title |
Remote forcing for the interannual variability of surface melting events over the Ross Ice Shelf |
title_short |
Remote forcing for the interannual variability of surface melting events over the Ross Ice Shelf |
title_full |
Remote forcing for the interannual variability of surface melting events over the Ross Ice Shelf |
title_fullStr |
Remote forcing for the interannual variability of surface melting events over the Ross Ice Shelf |
title_full_unstemmed |
Remote forcing for the interannual variability of surface melting events over the Ross Ice Shelf |
title_sort |
remote forcing for the interannual variability of surface melting events over the ross ice shelf |
publishDate |
2023 |
url |
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5021448 |
geographic |
Ross Ice Shelf Ross Sea West Antarctica |
geographic_facet |
Ross Ice Shelf Ross Sea West Antarctica |
genre |
Antarc* Antarctica Ice Shelf Ross Ice Shelf Ross Sea West Antarctica |
genre_facet |
Antarc* Antarctica Ice Shelf Ross Ice Shelf Ross Sea West Antarctica |
op_source |
XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.57757/IUGG23-3064 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5021448 |
op_doi |
https://doi.org/10.57757/IUGG23-3064 |
_version_ |
1772818422330032128 |