Antarctic Slope Current control on cross-slope heat transport

Ocean heat transport towards Antarctica directly drives the melting of Antarctic ice shelves, modulating sea level rise and the formation of Antarctic Bottom Water. A common dynamical assumption is that heat transport across the Antarctic continental slope is modulated by the strength of the Antarct...

Full description

Bibliographic Details
Main Authors: Aguiar, W., Morrison, A., Huneke, W., Hogg, A., England, M., Spence, P.
Format: Conference Object
Language:English
Published: 2023
Subjects:
Online Access:https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020764
id ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_5020764
record_format openpolar
spelling ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_5020764 2023-07-23T04:14:23+02:00 Antarctic Slope Current control on cross-slope heat transport Aguiar, W. Morrison, A. Huneke, W. Hogg, A. England, M. Spence, P. 2023-07-11 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020764 eng eng info:eu-repo/semantics/altIdentifier/doi/10.57757/IUGG23-3781 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020764 XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) info:eu-repo/semantics/conferenceObject 2023 ftgfzpotsdam https://doi.org/10.57757/IUGG23-3781 2023-07-02T23:40:07Z Ocean heat transport towards Antarctica directly drives the melting of Antarctic ice shelves, modulating sea level rise and the formation of Antarctic Bottom Water. A common dynamical assumption is that heat transport across the Antarctic continental slope is modulated by the strength of the Antarctic Slope Current (ASC), which is thought to act as a barrier to cross-slope heat transport. However, observations of the ASC are too scarce to investigate its relationship to poleward heat transport across large circumpolar spatial scales, or over long temporal scales. Also, until recently, ocean models lacked the spatial resolution required to accurately represent the ASC or the eddy heat transport onto the Antarctic shelf. In this study, we analyze the relationship between the ASC and the cross-slope heat transport in a circumpolar, eddy-rich ocean and sea ice simulation. We find that the local strength of the time-mean ASC is not a good predictor of local cross-slope heat transport, i.e., spatial variability in the ASC is not related to spatial variability in poleward heat transport. However, there is a relationship between ASC strength and cross-slope heat transport in the temporal domain. We quantify the strength of the relationship across different time scales (sub-seasonal, seasonal and interannual) and across varying model resolution (from 1/10º to 1/20º to 1/40º). Conference Object Antarc* Antarctic Antarctica Ice Shelves Sea ice GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam) Antarctic The Antarctic
institution Open Polar
collection GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)
op_collection_id ftgfzpotsdam
language English
description Ocean heat transport towards Antarctica directly drives the melting of Antarctic ice shelves, modulating sea level rise and the formation of Antarctic Bottom Water. A common dynamical assumption is that heat transport across the Antarctic continental slope is modulated by the strength of the Antarctic Slope Current (ASC), which is thought to act as a barrier to cross-slope heat transport. However, observations of the ASC are too scarce to investigate its relationship to poleward heat transport across large circumpolar spatial scales, or over long temporal scales. Also, until recently, ocean models lacked the spatial resolution required to accurately represent the ASC or the eddy heat transport onto the Antarctic shelf. In this study, we analyze the relationship between the ASC and the cross-slope heat transport in a circumpolar, eddy-rich ocean and sea ice simulation. We find that the local strength of the time-mean ASC is not a good predictor of local cross-slope heat transport, i.e., spatial variability in the ASC is not related to spatial variability in poleward heat transport. However, there is a relationship between ASC strength and cross-slope heat transport in the temporal domain. We quantify the strength of the relationship across different time scales (sub-seasonal, seasonal and interannual) and across varying model resolution (from 1/10º to 1/20º to 1/40º).
format Conference Object
author Aguiar, W.
Morrison, A.
Huneke, W.
Hogg, A.
England, M.
Spence, P.
spellingShingle Aguiar, W.
Morrison, A.
Huneke, W.
Hogg, A.
England, M.
Spence, P.
Antarctic Slope Current control on cross-slope heat transport
author_facet Aguiar, W.
Morrison, A.
Huneke, W.
Hogg, A.
England, M.
Spence, P.
author_sort Aguiar, W.
title Antarctic Slope Current control on cross-slope heat transport
title_short Antarctic Slope Current control on cross-slope heat transport
title_full Antarctic Slope Current control on cross-slope heat transport
title_fullStr Antarctic Slope Current control on cross-slope heat transport
title_full_unstemmed Antarctic Slope Current control on cross-slope heat transport
title_sort antarctic slope current control on cross-slope heat transport
publishDate 2023
url https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020764
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
Antarctica
Ice Shelves
Sea ice
genre_facet Antarc*
Antarctic
Antarctica
Ice Shelves
Sea ice
op_source XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
op_relation info:eu-repo/semantics/altIdentifier/doi/10.57757/IUGG23-3781
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020764
op_doi https://doi.org/10.57757/IUGG23-3781
_version_ 1772184417774600192