Indirect inference of Meridional Overturning Circulation variability using satellite observables

The ocean’s Meridional Overturning Circulation (MOC) plays a key role in the climate system, and thus monitoring its evolution is a scientific priority. However, monitoring arrays are limited to just a few latitudes in the Atlantic Ocean. Here we explore the possibility of inferring the MOC from glo...

Full description

Bibliographic Details
Main Authors: Solodoch, A., Stewart, A., Hogg, A., Manucharyan, G.
Format: Conference Object
Language:English
Published: 2023
Subjects:
Online Access:https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020557
id ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_5020557
record_format openpolar
spelling ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_5020557 2023-07-23T04:21:52+02:00 Indirect inference of Meridional Overturning Circulation variability using satellite observables Solodoch, A. Stewart, A. Hogg, A. Manucharyan, G. 2023-07-11 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020557 eng eng info:eu-repo/semantics/altIdentifier/doi/10.57757/IUGG23-3138 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020557 XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG) info:eu-repo/semantics/conferenceObject 2023 ftgfzpotsdam https://doi.org/10.57757/IUGG23-3138 2023-07-02T23:40:09Z The ocean’s Meridional Overturning Circulation (MOC) plays a key role in the climate system, and thus monitoring its evolution is a scientific priority. However, monitoring arrays are limited to just a few latitudes in the Atlantic Ocean. Here we explore the possibility of inferring the MOC from globally-available satellite measurements via machine learning (ML) techniques, using the ECCOV4 state estimate as a test bed. The methodological advantages of the present approach include the use purely of available satellite data, its applicability to multiple basins within a single ML framework, and the ML model’s simplicity. The ML model exhibits high skill in reconstructing the overturning cells in the Southern Ocean, Indo-Pacific Ocean, and the Atlantic Ocean. In particular, the approach achieves a higher skill in predicting the Southern Ocean abyssal MOC and the AMOC at 26.5N than has previously been achieved via dynamically-based approaches. We quantify the skill of our ML-based MOC reconstructions as a function of latitude in each ocean basin, and as a function of the time scale of MOC variability. We further test which combinations of satellite-observable variables are optimal, and explore how spatial coarsening of the input variables influences the ML model skill. For example, we find via ML interpretability techniques that high reconstruction skill in the Southern Ocean is mainly due to bottom pressure variability at a few prominent bathymetric ridges. Finally, we discuss the potential for reconstructing MOC strength from real satellite measurements. Conference Object Southern Ocean GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam) Pacific Southern Ocean
institution Open Polar
collection GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)
op_collection_id ftgfzpotsdam
language English
description The ocean’s Meridional Overturning Circulation (MOC) plays a key role in the climate system, and thus monitoring its evolution is a scientific priority. However, monitoring arrays are limited to just a few latitudes in the Atlantic Ocean. Here we explore the possibility of inferring the MOC from globally-available satellite measurements via machine learning (ML) techniques, using the ECCOV4 state estimate as a test bed. The methodological advantages of the present approach include the use purely of available satellite data, its applicability to multiple basins within a single ML framework, and the ML model’s simplicity. The ML model exhibits high skill in reconstructing the overturning cells in the Southern Ocean, Indo-Pacific Ocean, and the Atlantic Ocean. In particular, the approach achieves a higher skill in predicting the Southern Ocean abyssal MOC and the AMOC at 26.5N than has previously been achieved via dynamically-based approaches. We quantify the skill of our ML-based MOC reconstructions as a function of latitude in each ocean basin, and as a function of the time scale of MOC variability. We further test which combinations of satellite-observable variables are optimal, and explore how spatial coarsening of the input variables influences the ML model skill. For example, we find via ML interpretability techniques that high reconstruction skill in the Southern Ocean is mainly due to bottom pressure variability at a few prominent bathymetric ridges. Finally, we discuss the potential for reconstructing MOC strength from real satellite measurements.
format Conference Object
author Solodoch, A.
Stewart, A.
Hogg, A.
Manucharyan, G.
spellingShingle Solodoch, A.
Stewart, A.
Hogg, A.
Manucharyan, G.
Indirect inference of Meridional Overturning Circulation variability using satellite observables
author_facet Solodoch, A.
Stewart, A.
Hogg, A.
Manucharyan, G.
author_sort Solodoch, A.
title Indirect inference of Meridional Overturning Circulation variability using satellite observables
title_short Indirect inference of Meridional Overturning Circulation variability using satellite observables
title_full Indirect inference of Meridional Overturning Circulation variability using satellite observables
title_fullStr Indirect inference of Meridional Overturning Circulation variability using satellite observables
title_full_unstemmed Indirect inference of Meridional Overturning Circulation variability using satellite observables
title_sort indirect inference of meridional overturning circulation variability using satellite observables
publishDate 2023
url https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020557
geographic Pacific
Southern Ocean
geographic_facet Pacific
Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_source XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
op_relation info:eu-repo/semantics/altIdentifier/doi/10.57757/IUGG23-3138
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5020557
op_doi https://doi.org/10.57757/IUGG23-3138
_version_ 1772188168335917056