Understanding how low energy electrons control the variability of Earth’s electron radiation belts

The electron radiation belts are regions of geomagnetically trapped electrons, surrounding the Earth, presenting hazards to operational satellites. On the timeframe of hours, both the energy and particle flux of the radiation belts can change by orders of magnitude. Variations in the high energy rel...

Full description

Bibliographic Details
Main Author: Allison, H.
Format: Doctoral or Postdoctoral Thesis
Language:unknown
Published: University of Cambridge 2019
Subjects:
Online Access:https://gfzpublic.gfz-potsdam.de/pubman/item/item_5012120
id ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_5012120
record_format openpolar
spelling ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_5012120 2023-05-15T14:02:24+02:00 Understanding how low energy electrons control the variability of Earth’s electron radiation belts Allison, H. 2019 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5012120 unknown University of Cambridge info:eu-repo/semantics/altIdentifier/doi/10.17863/CAM.41530 https://gfzpublic.gfz-potsdam.de/pubman/item/item_5012120 info:eu-repo/semantics/doctoralThesis 2019 ftgfzpotsdam https://doi.org/10.17863/CAM.41530 2022-09-14T05:58:15Z The electron radiation belts are regions of geomagnetically trapped electrons, surrounding the Earth, presenting hazards to operational satellites. On the timeframe of hours, both the energy and particle flux of the radiation belts can change by orders of magnitude. Variations in the high energy relativistic electron flux depend on transport, acceleration, loss processes, and importantly, on the lower energy seed (10s – 100s keV) population. Seed population electrons are supplied to the radiation belt region during geomagnetically active periods and can be accelerated to higher energies via a range of processes. Unlike the higher energy, $>$1 MeV electrons, the azimuthal drift of the seed population is strongly affected by the convection electric field. Using fourteen years of electron flux data from low Earth orbit (LEO) satellites, a statistical study was performed on the magnetic local time distribution of three seed population energies, across a range of activity levels, defined by the geomagnetic indices AE, AE*, Kp, the solar wind velocity, and V$_sw$B$_z$. During periods of high activity, dawn-dusk flux asymmetries of over an order of magnitude were observed for $>$30 and $>$100 keV electrons, due to increased flux in the dawn sector. For $>$300 keV electrons, magnetic local time asymmetries were also present, but arose primarily due to a decrease in the average dusk-side flux beyond L* $\sim$4.5. A novel method was developed that utilizes measurements from low altitude, polar orbiting POES and MetOp satellites to retrieve the seed population at a pitch angle of 90$^o$. The resulting dataset offers a high time resolution, across multiple magnetic local time planes, and was used to formulate event-specific low energy boundary conditions for the British Antarctic Survey Radiation Belt Model (BAS-RBM). This new low energy boundary condition from LEO data has a higher spatial and temporal resolution, and a broader L* coverage, than previous work. The impact of variations in the seed population on ... Doctoral or Postdoctoral Thesis Antarc* Antarctic British Antarctic Survey GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam) Antarctic
institution Open Polar
collection GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)
op_collection_id ftgfzpotsdam
language unknown
description The electron radiation belts are regions of geomagnetically trapped electrons, surrounding the Earth, presenting hazards to operational satellites. On the timeframe of hours, both the energy and particle flux of the radiation belts can change by orders of magnitude. Variations in the high energy relativistic electron flux depend on transport, acceleration, loss processes, and importantly, on the lower energy seed (10s – 100s keV) population. Seed population electrons are supplied to the radiation belt region during geomagnetically active periods and can be accelerated to higher energies via a range of processes. Unlike the higher energy, $>$1 MeV electrons, the azimuthal drift of the seed population is strongly affected by the convection electric field. Using fourteen years of electron flux data from low Earth orbit (LEO) satellites, a statistical study was performed on the magnetic local time distribution of three seed population energies, across a range of activity levels, defined by the geomagnetic indices AE, AE*, Kp, the solar wind velocity, and V$_sw$B$_z$. During periods of high activity, dawn-dusk flux asymmetries of over an order of magnitude were observed for $>$30 and $>$100 keV electrons, due to increased flux in the dawn sector. For $>$300 keV electrons, magnetic local time asymmetries were also present, but arose primarily due to a decrease in the average dusk-side flux beyond L* $\sim$4.5. A novel method was developed that utilizes measurements from low altitude, polar orbiting POES and MetOp satellites to retrieve the seed population at a pitch angle of 90$^o$. The resulting dataset offers a high time resolution, across multiple magnetic local time planes, and was used to formulate event-specific low energy boundary conditions for the British Antarctic Survey Radiation Belt Model (BAS-RBM). This new low energy boundary condition from LEO data has a higher spatial and temporal resolution, and a broader L* coverage, than previous work. The impact of variations in the seed population on ...
format Doctoral or Postdoctoral Thesis
author Allison, H.
spellingShingle Allison, H.
Understanding how low energy electrons control the variability of Earth’s electron radiation belts
author_facet Allison, H.
author_sort Allison, H.
title Understanding how low energy electrons control the variability of Earth’s electron radiation belts
title_short Understanding how low energy electrons control the variability of Earth’s electron radiation belts
title_full Understanding how low energy electrons control the variability of Earth’s electron radiation belts
title_fullStr Understanding how low energy electrons control the variability of Earth’s electron radiation belts
title_full_unstemmed Understanding how low energy electrons control the variability of Earth’s electron radiation belts
title_sort understanding how low energy electrons control the variability of earth’s electron radiation belts
publisher University of Cambridge
publishDate 2019
url https://gfzpublic.gfz-potsdam.de/pubman/item/item_5012120
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
British Antarctic Survey
genre_facet Antarc*
Antarctic
British Antarctic Survey
op_relation info:eu-repo/semantics/altIdentifier/doi/10.17863/CAM.41530
https://gfzpublic.gfz-potsdam.de/pubman/item/item_5012120
op_doi https://doi.org/10.17863/CAM.41530
_version_ 1766272663620157440