Simulation and observation of global ocean mass anomalies.

Recently reprocessed GRACE gravity fields are found to provide reliable ocean mass anomalies down to 500 km regional averages when comparing them to mass observations obtained from sterically corrected Jason 1 altimetry and simulated mass anomalies derived from the Ocean Model for Circulation and Ti...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Dobslaw, H., Thomas, M.
Other Authors: 0 Pre-GFZ, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum, 1.3 Earth System Modelling, 1.0 Geodesy and Remote Sensing, Departments, GFZ Publication Database, Deutsches GeoForschungsZentrum
Format: Article in Journal/Newspaper
Language:unknown
Published: 2007
Subjects:
Online Access:https://gfzpublic.gfz-potsdam.de/pubman/item/item_235380
Description
Summary:Recently reprocessed GRACE gravity fields are found to provide reliable ocean mass anomalies down to 500 km regional averages when comparing them to mass observations obtained from sterically corrected Jason 1 altimetry and simulated mass anomalies derived from the Ocean Model for Circulation and Tides (OMCT). Beside the assessment of systematic shortcomings of GRACE, Jason 1 and OMCT estimates, robust signals of mass anomalies in the North Pacific and in various regions of the Southern Ocean are identified in all three independent data sets. Correlations of up to 0.8 and rms values of differences of around 2 hPa indicate that uncertainties are well below the expected monthly mean mass signals of up to 6 hPa rms in these regions. By means of output of the numerical ocean model, mass anomalies are related to changes in barotropic ocean currents, providing in turn the opportunity to infer barotropic current anomalies from GRACE observations, and therefore principally allowing to monitor climate relevant changes of ocean currents from satellite observations.