Sensitivity of near field GIA response with respect to rheological features of the Earth structure

One task of the German National Climate Modeling Initiative PalMod will be to couple earth system models representing the atmospere, ocean and ice dynamics during the last glacial cycle with the dynamic loading response of a viscoelastic earth model. In preparation, we discuss in this study the infl...

Full description

Bibliographic Details
Main Authors: Hagedoorn, J., Klemann, V., Sasgen, I., Thomas, M.
Format: Conference Object
Language:unknown
Published: 2016
Subjects:
Online Access:https://gfzpublic.gfz-potsdam.de/pubman/item/item_1503908
id ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_1503908
record_format openpolar
spelling ftgfzpotsdam:oai:gfzpublic.gfz-potsdam.de:item_1503908 2023-05-15T16:41:21+02:00 Sensitivity of near field GIA response with respect to rheological features of the Earth structure Hagedoorn, J. Klemann, V. Sasgen, I. Thomas, M. 2016 https://gfzpublic.gfz-potsdam.de/pubman/item/item_1503908 unknown https://gfzpublic.gfz-potsdam.de/pubman/item/item_1503908 Geophysical Research Abstracts, 18, EGU2016-12202,2016 info:eu-repo/semantics/conferenceObject 2016 ftgfzpotsdam 2022-09-14T05:55:01Z One task of the German National Climate Modeling Initiative PalMod will be to couple earth system models representing the atmospere, ocean and ice dynamics during the last glacial cycle with the dynamic loading response of a viscoelastic earth model. In preparation, we discuss in this study the influence of viscosity stratification and of lateral heterogeneities in the Earth structure on the solid-earth response to glacial loading. As discussed in literature, there is a controversy about the impact of lateral heterogeneity on the prediction of present and past GIA signals. The influence of the Earth structure on the far-field response is governed by the flexural behaviour of the regional lithosphere and upper-mantle structure in response to the varying ocean load. The influence at and around the glacial ice sheets is substantial with respect to the amplitudes and also with respect to the temporal evolution of the earth’s response. Depending on the region of interest, lithospheric variations are present over the extent of the glacial ice sheets varying between 40 and 200 km, and lateral variations in viscosity can vary by one or two orders of magnitude. The focus will be to what extent the behaviour of a laterally heterogeneous viscosity structure can be parameterised by an adjusted spherical earth model representation. Accordingly, we apply predefined ice-sheet histories (like ICE5G and ICE6G) and analyse ensemble runs representing the variability of relative sea-level and palaeotopography predictions. Spatial pattern of deformation fields will be discussed as the behaviour at specific sea-level curves. Furthermore, we compare the sensitivity on earth structure during the evolution of sea level and palaeo topography during the termination phase of the last glaciation to present-day rates of relative sea-level height and radial displacement. Conference Object Ice Sheet GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)
institution Open Polar
collection GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)
op_collection_id ftgfzpotsdam
language unknown
description One task of the German National Climate Modeling Initiative PalMod will be to couple earth system models representing the atmospere, ocean and ice dynamics during the last glacial cycle with the dynamic loading response of a viscoelastic earth model. In preparation, we discuss in this study the influence of viscosity stratification and of lateral heterogeneities in the Earth structure on the solid-earth response to glacial loading. As discussed in literature, there is a controversy about the impact of lateral heterogeneity on the prediction of present and past GIA signals. The influence of the Earth structure on the far-field response is governed by the flexural behaviour of the regional lithosphere and upper-mantle structure in response to the varying ocean load. The influence at and around the glacial ice sheets is substantial with respect to the amplitudes and also with respect to the temporal evolution of the earth’s response. Depending on the region of interest, lithospheric variations are present over the extent of the glacial ice sheets varying between 40 and 200 km, and lateral variations in viscosity can vary by one or two orders of magnitude. The focus will be to what extent the behaviour of a laterally heterogeneous viscosity structure can be parameterised by an adjusted spherical earth model representation. Accordingly, we apply predefined ice-sheet histories (like ICE5G and ICE6G) and analyse ensemble runs representing the variability of relative sea-level and palaeotopography predictions. Spatial pattern of deformation fields will be discussed as the behaviour at specific sea-level curves. Furthermore, we compare the sensitivity on earth structure during the evolution of sea level and palaeo topography during the termination phase of the last glaciation to present-day rates of relative sea-level height and radial displacement.
format Conference Object
author Hagedoorn, J.
Klemann, V.
Sasgen, I.
Thomas, M.
spellingShingle Hagedoorn, J.
Klemann, V.
Sasgen, I.
Thomas, M.
Sensitivity of near field GIA response with respect to rheological features of the Earth structure
author_facet Hagedoorn, J.
Klemann, V.
Sasgen, I.
Thomas, M.
author_sort Hagedoorn, J.
title Sensitivity of near field GIA response with respect to rheological features of the Earth structure
title_short Sensitivity of near field GIA response with respect to rheological features of the Earth structure
title_full Sensitivity of near field GIA response with respect to rheological features of the Earth structure
title_fullStr Sensitivity of near field GIA response with respect to rheological features of the Earth structure
title_full_unstemmed Sensitivity of near field GIA response with respect to rheological features of the Earth structure
title_sort sensitivity of near field gia response with respect to rheological features of the earth structure
publishDate 2016
url https://gfzpublic.gfz-potsdam.de/pubman/item/item_1503908
genre Ice Sheet
genre_facet Ice Sheet
op_source Geophysical Research Abstracts, 18, EGU2016-12202,2016
op_relation https://gfzpublic.gfz-potsdam.de/pubman/item/item_1503908
_version_ 1766031786236706816