Multiphase reactive transport in planetary ices

As an ice-ocean world itself, Earth provides a number of analog environments that can be used to better understand the dynamics of ice-ocean processes occurring on bodies like Europa [Eicken, 2002; Gleeson et al., 2012; Marion et al., 2003]. Natural and laboratory grown sea ice provides an accessibl...

Full description

Bibliographic Details
Main Author: Buffo, Jacob J.
Other Authors: Schmidt, Britney, Huber, Christian, Wray, James J., Reinhard, Christopher T., Robel, Alexander, Earth and Atmospheric Sciences
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Georgia Institute of Technology 2019
Subjects:
Online Access:http://hdl.handle.net/1853/61767
Description
Summary:As an ice-ocean world itself, Earth provides a number of analog environments that can be used to better understand the dynamics of ice-ocean processes occurring on bodies like Europa [Eicken, 2002; Gleeson et al., 2012; Marion et al., 2003]. Natural and laboratory grown sea ice provides an accessible sample of ocean-derived ice, where the effects of the local thermochemical environment on ice formation rate, microstructure, and biogeochemistry can be studied in detail [Wettlaufer, 2010]. The remote environment of sub-ice shelf cavities provides an additional analog to the subsurface ocean of Europa. Devoid of sunlight, trapped beneath kilometers of overlying ice, and with limited contact to the open ocean these regions can aid in our understanding of the circulatory, biogeochemical, thermodynamic, and accretion/ablation processes that may occur beneath Europa’s ice shell [Lawrence et al., 2016]. Together, these possibilities motivate Chapter 2, which focuses on building a comprehensive model of the combined influence of temperature gradients, salinity, and ice nucleation within the water column on the properties of terrestrial ices. Quantifying how environmental factors impact the dynamics and properties of terrestrial ices can then be extended to improve estimates of the characteristics and behavior of planetary ices subject to diverse thermochemical regimes [Buffo et al., in review; Buffo et al., 2019]. This ability to predict physicochemical properties of planetary ices informs numerical simulations of ice-ocean world geophysics, chemical cycling, and habitability and provides context for the synthesis and interpretation of spacecraft data. Our foundational and relatively extensive understanding of the terrestrial cryosphere provides immense leverage when attempting to decipher the complex innerworkings of much less fully understood ice-ocean worlds and provides a benchmark for validating numerical models. In Chapter 3, the foundation provided by work in Chapter 2 is extended to accommodate the composition ...