Projected changes in a multiscale environment: the subpolar North Atlantic Ocean

By the end of this century, the Oceans will markedly change in response to anthropogenic stressors and increasing greenhouse gas emissions. Their circulation and the horizontal and vertical transport of heat, salt, carbon, oxygen and nutrients will be impacted. In response to rising temperatures, st...

Full description

Bibliographic Details
Main Author: Tagklis, Filippos
Other Authors: Bracco, Annalisa, Ito, Takamitsu, DiLorenzo, Emanuele, Castelao, Renato M., Artale, Vincenzo, Earth and Atmospheric Sciences
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Georgia Institute of Technology 2022
Subjects:
Online Access:http://hdl.handle.net/1853/65992
id ftgeorgiatech:oai:repository.gatech.edu:1853/65992
record_format openpolar
spelling ftgeorgiatech:oai:repository.gatech.edu:1853/65992 2024-06-02T08:09:58+00:00 Projected changes in a multiscale environment: the subpolar North Atlantic Ocean Tagklis, Filippos Bracco, Annalisa Ito, Takamitsu DiLorenzo, Emanuele Castelao, Renato M. Artale, Vincenzo Earth and Atmospheric Sciences 2022-01-14T16:03:38Z application/pdf http://hdl.handle.net/1853/65992 en_US eng Georgia Institute of Technology http://hdl.handle.net/1853/65992 Ocean circulation Deoxygenation Labrador sea Text Dissertation 2022 ftgeorgiatech 2024-05-06T11:31:34Z By the end of this century, the Oceans will markedly change in response to anthropogenic stressors and increasing greenhouse gas emissions. Their circulation and the horizontal and vertical transport of heat, salt, carbon, oxygen and nutrients will be impacted. In response to rising temperatures, stratification will increase in the upper water column, affecting ventilation of the deep ocean and nutrient transport from the deep and nutrient-rich waters to the euphotic layer. Seawater will become more acidic as well, as atmospheric carbon dioxide is taken up by the ocean and redistributed by its circulation, and will lose oxygen. The global oceans are replenished by newly ventilated water to depths far greater than the euphotic layer only in few, high latitude areas where open ocean deep convection and deep-water formation occur. In the North Atlantic (NA), the Labrador Sea (LS) is one of such regions, and the best observed. Predicting the evolution of the ocean circulation and marine ecosystem changes in the North Atlantic is therefore central to understand the future climate trajectory. This thesis presents an analyses of state-of-the-art Earth Systems Models (ESMs) included in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and investigates their skill in representing the physics and biogeochemistry of the subtropical and subpolar NA regions and their evolution at centennial timescales. Attention is paid to oxygen and nutrient inventories, and to the mechanisms that regulate the changes of oxygen and nutrients. Additionally, simulations by a state-of-the-art high-resolution regional ocean model are performed and analyze to quantify how and how much ocean turbulence impacts deep convection and oxygen and carbon drawdown in the LS. Ph.D. Doctoral or Postdoctoral Thesis Labrador Sea North Atlantic Georgia Institute of Technology: SMARTech - Scholarly Materials and Research at Georgia Tech
institution Open Polar
collection Georgia Institute of Technology: SMARTech - Scholarly Materials and Research at Georgia Tech
op_collection_id ftgeorgiatech
language English
topic Ocean circulation
Deoxygenation
Labrador sea
spellingShingle Ocean circulation
Deoxygenation
Labrador sea
Tagklis, Filippos
Projected changes in a multiscale environment: the subpolar North Atlantic Ocean
topic_facet Ocean circulation
Deoxygenation
Labrador sea
description By the end of this century, the Oceans will markedly change in response to anthropogenic stressors and increasing greenhouse gas emissions. Their circulation and the horizontal and vertical transport of heat, salt, carbon, oxygen and nutrients will be impacted. In response to rising temperatures, stratification will increase in the upper water column, affecting ventilation of the deep ocean and nutrient transport from the deep and nutrient-rich waters to the euphotic layer. Seawater will become more acidic as well, as atmospheric carbon dioxide is taken up by the ocean and redistributed by its circulation, and will lose oxygen. The global oceans are replenished by newly ventilated water to depths far greater than the euphotic layer only in few, high latitude areas where open ocean deep convection and deep-water formation occur. In the North Atlantic (NA), the Labrador Sea (LS) is one of such regions, and the best observed. Predicting the evolution of the ocean circulation and marine ecosystem changes in the North Atlantic is therefore central to understand the future climate trajectory. This thesis presents an analyses of state-of-the-art Earth Systems Models (ESMs) included in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and investigates their skill in representing the physics and biogeochemistry of the subtropical and subpolar NA regions and their evolution at centennial timescales. Attention is paid to oxygen and nutrient inventories, and to the mechanisms that regulate the changes of oxygen and nutrients. Additionally, simulations by a state-of-the-art high-resolution regional ocean model are performed and analyze to quantify how and how much ocean turbulence impacts deep convection and oxygen and carbon drawdown in the LS. Ph.D.
author2 Bracco, Annalisa
Ito, Takamitsu
DiLorenzo, Emanuele
Castelao, Renato M.
Artale, Vincenzo
Earth and Atmospheric Sciences
format Doctoral or Postdoctoral Thesis
author Tagklis, Filippos
author_facet Tagklis, Filippos
author_sort Tagklis, Filippos
title Projected changes in a multiscale environment: the subpolar North Atlantic Ocean
title_short Projected changes in a multiscale environment: the subpolar North Atlantic Ocean
title_full Projected changes in a multiscale environment: the subpolar North Atlantic Ocean
title_fullStr Projected changes in a multiscale environment: the subpolar North Atlantic Ocean
title_full_unstemmed Projected changes in a multiscale environment: the subpolar North Atlantic Ocean
title_sort projected changes in a multiscale environment: the subpolar north atlantic ocean
publisher Georgia Institute of Technology
publishDate 2022
url http://hdl.handle.net/1853/65992
genre Labrador Sea
North Atlantic
genre_facet Labrador Sea
North Atlantic
op_relation http://hdl.handle.net/1853/65992
_version_ 1800755770804928512