Table_1_Relationship Between Carbon- and Oxygen-Based Primary Productivity in the Arctic Ocean, Svalbard Archipelago.docx

Phytoplankton contribute half of the primary production (PP) in the biosphere and are the major source of energy for the Arctic Ocean ecosystem. While PP measurements are therefore fundamental to our understanding of marine biogeochemical cycling, the extent to which current methods provide a defini...

Full description

Bibliographic Details
Main Authors: Marina Sanz-Martín, María Vernet, Mattias R. Cape, Elena Mesa, Antonio Delgado-Huertas, Marit Reigstad, Paul Wassmann, Carlos M. Duarte
Format: Dataset
Language:unknown
Published: 2019
Subjects:
Online Access:https://doi.org/10.3389/fmars.2019.00468.s001
https://figshare.com/articles/Table_1_Relationship_Between_Carbon-_and_Oxygen-Based_Primary_Productivity_in_the_Arctic_Ocean_Svalbard_Archipelago_docx/9209804
Description
Summary:Phytoplankton contribute half of the primary production (PP) in the biosphere and are the major source of energy for the Arctic Ocean ecosystem. While PP measurements are therefore fundamental to our understanding of marine biogeochemical cycling, the extent to which current methods provide a definitive estimate of this process remains uncertain given differences in their underlying approaches, and assumptions. This is especially the case in the Arctic Ocean, a region of the planet undergoing rapid evolution as a result of climate change, yet where PP measurements are sparse. In this study, we compared three common methods for estimating PP in the European Arctic Ocean: (1) production of 18 O-labeled oxygen (GPP- 18 O), (2) changes in dissolved oxygen (GPP-DO), and (3) incorporation rates of 14 C-labeled carbon into particulate organic carbon ( 14 C-POC) and into total organic carbon ( 14 C-TOC, the sum of dissolved and particulate organic carbon). Results show that PP rates derived using oxygen methods showed good agreement across season and were strongly positively correlated. While also strongly correlated, higher scatter associated with seasonal changes was observed between 14 C-POC and 14 C-TOC. The 14 C-TOC-derived rates were, on average, approximately 50% of the oxygen-based estimates. However, the relationship between these estimates changed seasonally. In May, during a spring bloom of Phaeocystis sp., 14 C-TOC was 52% and 50% of GPP-DO, and GPP- 18 O, respectively, while in August, during post-bloom conditions dominated by flagellates, 14 C-TOC was 125% of GPP-DO, and 14 C-TOC was 175% of GPP- 18 O. Varying relationship between C and O rates may be the result of varying importance of respiration, where C-based rates estimate net primary production (NPP) and O-based rates estimate gross primary production (GPP). However, uncertainty remains in this comparison, given differing assumptions of the methods and the photosynthetic quotients. The median O:C ratio of 4.75 in May is within the range of that ...