Presentation_3_Antiviral protection in the Pacific oyster Crassostrea (Magallana) gigas against OsHV-1 infection using UV-inactivated virus.pptx
The increase of the frequency and severity of marine diseases affecting farmed marine mollusks are currently threatening the sustainability of this aquaculture sector, with few available prophylactic or therapeutic solutions. Recent advances have shown that the innate immune system of invertebrates...
Main Authors: | , , , , , , , |
---|---|
Format: | Conference Object |
Language: | unknown |
Published: |
2024
|
Subjects: | |
Online Access: | https://doi.org/10.3389/fmars.2024.1378511.s003 https://figshare.com/articles/presentation/Presentation_3_Antiviral_protection_in_the_Pacific_oyster_Crassostrea_Magallana_gigas_against_OsHV-1_infection_using_UV-inactivated_virus_pptx/25670511 |
id |
ftfrontimediafig:oai:figshare.com:article/25670511 |
---|---|
record_format |
openpolar |
spelling |
ftfrontimediafig:oai:figshare.com:article/25670511 2024-09-15T18:03:16+00:00 Presentation_3_Antiviral protection in the Pacific oyster Crassostrea (Magallana) gigas against OsHV-1 infection using UV-inactivated virus.pptx Benjamin Morga Mickäel Mège Nicole Faury Lionel Dégremont Bruno Petton Jean-François Pépin Tristan Renault Caroline Montagnani 2024-04-23T04:10:12Z https://doi.org/10.3389/fmars.2024.1378511.s003 https://figshare.com/articles/presentation/Presentation_3_Antiviral_protection_in_the_Pacific_oyster_Crassostrea_Magallana_gigas_against_OsHV-1_infection_using_UV-inactivated_virus_pptx/25670511 unknown doi:10.3389/fmars.2024.1378511.s003 https://figshare.com/articles/presentation/Presentation_3_Antiviral_protection_in_the_Pacific_oyster_Crassostrea_Magallana_gigas_against_OsHV-1_infection_using_UV-inactivated_virus_pptx/25670511 CC BY 4.0 Oceanography Marine Biology Marine Geoscience Biological Oceanography Chemical Oceanography Physical Oceanography Marine Engineering antiviral immunity priming OsHV-1 invertebrate Crassostrea gigas Magallana gigas Pacific oyster Text Presentation 2024 ftfrontimediafig https://doi.org/10.3389/fmars.2024.1378511.s003 2024-08-19T06:19:45Z The increase of the frequency and severity of marine diseases affecting farmed marine mollusks are currently threatening the sustainability of this aquaculture sector, with few available prophylactic or therapeutic solutions. Recent advances have shown that the innate immune system of invertebrates can develop memory mechanisms allowing for efficient protection against pathogens. These properties have been called innate immune memory, immune priming or trained immunity. Previous results demonstrated the possibility to elicit antiviral immune priming to protect Pacific oysters against the ostreid herpes virus 1 (OsHV-1), currently plaguing M. gigas production worldwide. Here, we demonstrate that UV-inactivated OsHV-1 is also a potent elicitor of immune priming. Previous exposure to the inactivated virus was able to efficiently protect oysters against OsHV-1, significantly increasing oyster survival. We demonstrate that this exposure blocked viral replication and was able to induce antiviral gene expression potentially involved in controlling the infection. Finally, we show that this phenomenon can persist for at least 3 months, suggesting the induction of innate immune memory mechanisms. This study unravels new ways to train the Pacific oyster immune system that could represent an opportunity to develop new prophylactic strategies to improve health and to sustain the development of marine mollusk aquaculture. Conference Object Crassostrea gigas Pacific oyster Frontiers: Figshare |
institution |
Open Polar |
collection |
Frontiers: Figshare |
op_collection_id |
ftfrontimediafig |
language |
unknown |
topic |
Oceanography Marine Biology Marine Geoscience Biological Oceanography Chemical Oceanography Physical Oceanography Marine Engineering antiviral immunity priming OsHV-1 invertebrate Crassostrea gigas Magallana gigas Pacific oyster |
spellingShingle |
Oceanography Marine Biology Marine Geoscience Biological Oceanography Chemical Oceanography Physical Oceanography Marine Engineering antiviral immunity priming OsHV-1 invertebrate Crassostrea gigas Magallana gigas Pacific oyster Benjamin Morga Mickäel Mège Nicole Faury Lionel Dégremont Bruno Petton Jean-François Pépin Tristan Renault Caroline Montagnani Presentation_3_Antiviral protection in the Pacific oyster Crassostrea (Magallana) gigas against OsHV-1 infection using UV-inactivated virus.pptx |
topic_facet |
Oceanography Marine Biology Marine Geoscience Biological Oceanography Chemical Oceanography Physical Oceanography Marine Engineering antiviral immunity priming OsHV-1 invertebrate Crassostrea gigas Magallana gigas Pacific oyster |
description |
The increase of the frequency and severity of marine diseases affecting farmed marine mollusks are currently threatening the sustainability of this aquaculture sector, with few available prophylactic or therapeutic solutions. Recent advances have shown that the innate immune system of invertebrates can develop memory mechanisms allowing for efficient protection against pathogens. These properties have been called innate immune memory, immune priming or trained immunity. Previous results demonstrated the possibility to elicit antiviral immune priming to protect Pacific oysters against the ostreid herpes virus 1 (OsHV-1), currently plaguing M. gigas production worldwide. Here, we demonstrate that UV-inactivated OsHV-1 is also a potent elicitor of immune priming. Previous exposure to the inactivated virus was able to efficiently protect oysters against OsHV-1, significantly increasing oyster survival. We demonstrate that this exposure blocked viral replication and was able to induce antiviral gene expression potentially involved in controlling the infection. Finally, we show that this phenomenon can persist for at least 3 months, suggesting the induction of innate immune memory mechanisms. This study unravels new ways to train the Pacific oyster immune system that could represent an opportunity to develop new prophylactic strategies to improve health and to sustain the development of marine mollusk aquaculture. |
format |
Conference Object |
author |
Benjamin Morga Mickäel Mège Nicole Faury Lionel Dégremont Bruno Petton Jean-François Pépin Tristan Renault Caroline Montagnani |
author_facet |
Benjamin Morga Mickäel Mège Nicole Faury Lionel Dégremont Bruno Petton Jean-François Pépin Tristan Renault Caroline Montagnani |
author_sort |
Benjamin Morga |
title |
Presentation_3_Antiviral protection in the Pacific oyster Crassostrea (Magallana) gigas against OsHV-1 infection using UV-inactivated virus.pptx |
title_short |
Presentation_3_Antiviral protection in the Pacific oyster Crassostrea (Magallana) gigas against OsHV-1 infection using UV-inactivated virus.pptx |
title_full |
Presentation_3_Antiviral protection in the Pacific oyster Crassostrea (Magallana) gigas against OsHV-1 infection using UV-inactivated virus.pptx |
title_fullStr |
Presentation_3_Antiviral protection in the Pacific oyster Crassostrea (Magallana) gigas against OsHV-1 infection using UV-inactivated virus.pptx |
title_full_unstemmed |
Presentation_3_Antiviral protection in the Pacific oyster Crassostrea (Magallana) gigas against OsHV-1 infection using UV-inactivated virus.pptx |
title_sort |
presentation_3_antiviral protection in the pacific oyster crassostrea (magallana) gigas against oshv-1 infection using uv-inactivated virus.pptx |
publishDate |
2024 |
url |
https://doi.org/10.3389/fmars.2024.1378511.s003 https://figshare.com/articles/presentation/Presentation_3_Antiviral_protection_in_the_Pacific_oyster_Crassostrea_Magallana_gigas_against_OsHV-1_infection_using_UV-inactivated_virus_pptx/25670511 |
genre |
Crassostrea gigas Pacific oyster |
genre_facet |
Crassostrea gigas Pacific oyster |
op_relation |
doi:10.3389/fmars.2024.1378511.s003 https://figshare.com/articles/presentation/Presentation_3_Antiviral_protection_in_the_Pacific_oyster_Crassostrea_Magallana_gigas_against_OsHV-1_infection_using_UV-inactivated_virus_pptx/25670511 |
op_rights |
CC BY 4.0 |
op_doi |
https://doi.org/10.3389/fmars.2024.1378511.s003 |
_version_ |
1810440771989405696 |