Data_Sheet_1_Diversity and Selection of Surface Marine Microbiomes in the Atlantic-Influenced Arctic.zip

Arctic marine environments are experiencing rapid changes due to the polar amplification of global warming. These changes impact the habitat of the cold-adapted microbial communities, which underpin biogeochemical cycles and marine food webs. We comparatively investigated the differences in prokaryo...

Full description

Bibliographic Details
Main Authors: Nerea J. Aalto, Hannah D. Schweitzer, Stina Krsmanovic, Karley Campbell, Hans C. Bernstein
Format: Dataset
Language:unknown
Published: 2022
Subjects:
Online Access:https://doi.org/10.3389/fmicb.2022.892634.s001
https://figshare.com/articles/dataset/Data_Sheet_1_Diversity_and_Selection_of_Surface_Marine_Microbiomes_in_the_Atlantic-Influenced_Arctic_zip/20304624
Description
Summary:Arctic marine environments are experiencing rapid changes due to the polar amplification of global warming. These changes impact the habitat of the cold-adapted microbial communities, which underpin biogeochemical cycles and marine food webs. We comparatively investigated the differences in prokaryotic and microeukaryotic taxa between summer surface water microbiomes sampled along a latitudinal transect from the ice-free southern Barents Sea and into the sea-ice-covered Nansen Basin to disentangle the dominating community (ecological) selection processes driving phylogenetic diversity. The community structure and richness of each site-specific microbiome were assessed in relation to the physical and biogeochemical conditions of the environment. A strong homogeneous deterministic selection process was inferred across the entire sampling transect via a phylogenetic null modeling approach. The microbial species richness and diversity were not negatively influenced by northward decreasing temperature and salinity. The results also suggest that regional phytoplankton blooms are a major prevalent factor in governing the bacterial community structure. This study supports the consideration that strong homogeneous selection is imposed across these cold-water marine environments uniformly, regardless of geographic assignments within either the Nansen Basin or the Barents Sea.