Data_Sheet_2_Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events.csv

Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (δ 18 O, δ 2 H, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved...

Full description

Bibliographic Details
Main Authors: Moein Mellat, Hannah Bailey, Kaisa-Riikka Mustonen, Hannu Marttila, Eric S. Klein, Konstantin Gribanov, M. Syndonia Bret-Harte, Artem V. Chupakov, Dmitry V. Divine, Brent Else, Ilya Filippov, Valtteri Hyöky, Samantha Jones, Sergey N. Kirpotin, Aart Kroon, Helge Tore Markussen, Martin Nielsen, Maia Olsen, Riku Paavola, Oleg S. Pokrovsky, Anatoly Prokushkin, Morten Rasch, Katrine Raundrup, Otso Suominen, Ilkka Syvänperä, Sölvi Rúnar Vignisson, Evgeny Zarov, Jeffrey M. Welker
Format: Dataset
Language:unknown
Published: 2021
Subjects:
Online Access:https://doi.org/10.3389/feart.2021.651731.s002
https://figshare.com/articles/dataset/Data_Sheet_2_Hydroclimatic_Controls_on_the_Isotopic_18_O_2_H_d-excess_Traits_of_Pan-Arctic_Summer_Rainfall_Events_csv/14706714
id ftfrontimediafig:oai:figshare.com:article/14706714
record_format openpolar
spelling ftfrontimediafig:oai:figshare.com:article/14706714 2023-05-15T14:41:18+02:00 Data_Sheet_2_Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events.csv Moein Mellat Hannah Bailey Kaisa-Riikka Mustonen Hannu Marttila Eric S. Klein Konstantin Gribanov M. Syndonia Bret-Harte Artem V. Chupakov Dmitry V. Divine Brent Else Ilya Filippov Valtteri Hyöky Samantha Jones Sergey N. Kirpotin Aart Kroon Helge Tore Markussen Martin Nielsen Maia Olsen Riku Paavola Oleg S. Pokrovsky Anatoly Prokushkin Morten Rasch Katrine Raundrup Otso Suominen Ilkka Syvänperä Sölvi Rúnar Vignisson Evgeny Zarov Jeffrey M. Welker 2021-05-31T15:06:03Z https://doi.org/10.3389/feart.2021.651731.s002 https://figshare.com/articles/dataset/Data_Sheet_2_Hydroclimatic_Controls_on_the_Isotopic_18_O_2_H_d-excess_Traits_of_Pan-Arctic_Summer_Rainfall_Events_csv/14706714 unknown doi:10.3389/feart.2021.651731.s002 https://figshare.com/articles/dataset/Data_Sheet_2_Hydroclimatic_Controls_on_the_Isotopic_18_O_2_H_d-excess_Traits_of_Pan-Arctic_Summer_Rainfall_Events_csv/14706714 CC BY 4.0 CC-BY Solid Earth Sciences Climate Science Atmospheric Sciences not elsewhere classified Exploration Geochemistry Inorganic Geochemistry Isotope Geochemistry Organic Geochemistry Geochemistry not elsewhere classified Igneous and Metamorphic Petrology Ore Deposit Petrology Palaeontology (incl. Palynology) Structural Geology Tectonics Volcanology Geology not elsewhere classified Seismology and Seismic Exploration Glaciology Hydrogeology Natural Hazards Quaternary Environments Earth Sciences not elsewhere classified Evolutionary Impacts of Climate Change Arctic precipitation sea ice stable isotopes atmospheric circulation water cycle Dataset 2021 ftfrontimediafig https://doi.org/10.3389/feart.2021.651731.s002 2021-06-02T22:58:27Z Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (δ 18 O, δ 2 H, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 (n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where δ 2 H = 7.6⋅δ 18 O–1.8 (r 2 = 0.96, p < 0.01). Mean amount-weighted δ 18 O, δ 2 H, and d-excess values were −12.3, −93.5, and 4.9‰, respectively, with the lowest summer mean δ 18 O value observed in northwest Greenland (−19.9‰) and the highest in Iceland (−7.3‰). Southern Alaska recorded the lowest mean d-excess (−8.2%) and northern Russia the highest (9.9‰). We identify a range of δ 18 O-temperature coefficients from 0.31‰/°C (Alaska) to 0.93‰/°C (Russia). The steepest regression slopes (>0.75‰/°C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high δ 18 O values. Yet 32% of precipitation events, characterized by lower δ 18 O and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover ... Dataset Arctic Arctic Ocean Climate change Greenland Iceland Sea ice Subarctic Tundra Alaska Frontiers: Figshare Arctic Arctic Ocean Greenland
institution Open Polar
collection Frontiers: Figshare
op_collection_id ftfrontimediafig
language unknown
topic Solid Earth Sciences
Climate Science
Atmospheric Sciences not elsewhere classified
Exploration Geochemistry
Inorganic Geochemistry
Isotope Geochemistry
Organic Geochemistry
Geochemistry not elsewhere classified
Igneous and Metamorphic Petrology
Ore Deposit Petrology
Palaeontology (incl. Palynology)
Structural Geology
Tectonics
Volcanology
Geology not elsewhere classified
Seismology and Seismic Exploration
Glaciology
Hydrogeology
Natural Hazards
Quaternary Environments
Earth Sciences not elsewhere classified
Evolutionary Impacts of Climate Change
Arctic
precipitation
sea ice
stable isotopes
atmospheric circulation
water cycle
spellingShingle Solid Earth Sciences
Climate Science
Atmospheric Sciences not elsewhere classified
Exploration Geochemistry
Inorganic Geochemistry
Isotope Geochemistry
Organic Geochemistry
Geochemistry not elsewhere classified
Igneous and Metamorphic Petrology
Ore Deposit Petrology
Palaeontology (incl. Palynology)
Structural Geology
Tectonics
Volcanology
Geology not elsewhere classified
Seismology and Seismic Exploration
Glaciology
Hydrogeology
Natural Hazards
Quaternary Environments
Earth Sciences not elsewhere classified
Evolutionary Impacts of Climate Change
Arctic
precipitation
sea ice
stable isotopes
atmospheric circulation
water cycle
Moein Mellat
Hannah Bailey
Kaisa-Riikka Mustonen
Hannu Marttila
Eric S. Klein
Konstantin Gribanov
M. Syndonia Bret-Harte
Artem V. Chupakov
Dmitry V. Divine
Brent Else
Ilya Filippov
Valtteri Hyöky
Samantha Jones
Sergey N. Kirpotin
Aart Kroon
Helge Tore Markussen
Martin Nielsen
Maia Olsen
Riku Paavola
Oleg S. Pokrovsky
Anatoly Prokushkin
Morten Rasch
Katrine Raundrup
Otso Suominen
Ilkka Syvänperä
Sölvi Rúnar Vignisson
Evgeny Zarov
Jeffrey M. Welker
Data_Sheet_2_Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events.csv
topic_facet Solid Earth Sciences
Climate Science
Atmospheric Sciences not elsewhere classified
Exploration Geochemistry
Inorganic Geochemistry
Isotope Geochemistry
Organic Geochemistry
Geochemistry not elsewhere classified
Igneous and Metamorphic Petrology
Ore Deposit Petrology
Palaeontology (incl. Palynology)
Structural Geology
Tectonics
Volcanology
Geology not elsewhere classified
Seismology and Seismic Exploration
Glaciology
Hydrogeology
Natural Hazards
Quaternary Environments
Earth Sciences not elsewhere classified
Evolutionary Impacts of Climate Change
Arctic
precipitation
sea ice
stable isotopes
atmospheric circulation
water cycle
description Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (δ 18 O, δ 2 H, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 (n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where δ 2 H = 7.6⋅δ 18 O–1.8 (r 2 = 0.96, p < 0.01). Mean amount-weighted δ 18 O, δ 2 H, and d-excess values were −12.3, −93.5, and 4.9‰, respectively, with the lowest summer mean δ 18 O value observed in northwest Greenland (−19.9‰) and the highest in Iceland (−7.3‰). Southern Alaska recorded the lowest mean d-excess (−8.2%) and northern Russia the highest (9.9‰). We identify a range of δ 18 O-temperature coefficients from 0.31‰/°C (Alaska) to 0.93‰/°C (Russia). The steepest regression slopes (>0.75‰/°C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high δ 18 O values. Yet 32% of precipitation events, characterized by lower δ 18 O and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover ...
format Dataset
author Moein Mellat
Hannah Bailey
Kaisa-Riikka Mustonen
Hannu Marttila
Eric S. Klein
Konstantin Gribanov
M. Syndonia Bret-Harte
Artem V. Chupakov
Dmitry V. Divine
Brent Else
Ilya Filippov
Valtteri Hyöky
Samantha Jones
Sergey N. Kirpotin
Aart Kroon
Helge Tore Markussen
Martin Nielsen
Maia Olsen
Riku Paavola
Oleg S. Pokrovsky
Anatoly Prokushkin
Morten Rasch
Katrine Raundrup
Otso Suominen
Ilkka Syvänperä
Sölvi Rúnar Vignisson
Evgeny Zarov
Jeffrey M. Welker
author_facet Moein Mellat
Hannah Bailey
Kaisa-Riikka Mustonen
Hannu Marttila
Eric S. Klein
Konstantin Gribanov
M. Syndonia Bret-Harte
Artem V. Chupakov
Dmitry V. Divine
Brent Else
Ilya Filippov
Valtteri Hyöky
Samantha Jones
Sergey N. Kirpotin
Aart Kroon
Helge Tore Markussen
Martin Nielsen
Maia Olsen
Riku Paavola
Oleg S. Pokrovsky
Anatoly Prokushkin
Morten Rasch
Katrine Raundrup
Otso Suominen
Ilkka Syvänperä
Sölvi Rúnar Vignisson
Evgeny Zarov
Jeffrey M. Welker
author_sort Moein Mellat
title Data_Sheet_2_Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events.csv
title_short Data_Sheet_2_Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events.csv
title_full Data_Sheet_2_Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events.csv
title_fullStr Data_Sheet_2_Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events.csv
title_full_unstemmed Data_Sheet_2_Hydroclimatic Controls on the Isotopic (δ18 O, δ2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events.csv
title_sort data_sheet_2_hydroclimatic controls on the isotopic (δ18 o, δ2 h, d-excess) traits of pan-arctic summer rainfall events.csv
publishDate 2021
url https://doi.org/10.3389/feart.2021.651731.s002
https://figshare.com/articles/dataset/Data_Sheet_2_Hydroclimatic_Controls_on_the_Isotopic_18_O_2_H_d-excess_Traits_of_Pan-Arctic_Summer_Rainfall_Events_csv/14706714
geographic Arctic
Arctic Ocean
Greenland
geographic_facet Arctic
Arctic Ocean
Greenland
genre Arctic
Arctic Ocean
Climate change
Greenland
Iceland
Sea ice
Subarctic
Tundra
Alaska
genre_facet Arctic
Arctic Ocean
Climate change
Greenland
Iceland
Sea ice
Subarctic
Tundra
Alaska
op_relation doi:10.3389/feart.2021.651731.s002
https://figshare.com/articles/dataset/Data_Sheet_2_Hydroclimatic_Controls_on_the_Isotopic_18_O_2_H_d-excess_Traits_of_Pan-Arctic_Summer_Rainfall_Events_csv/14706714
op_rights CC BY 4.0
op_rightsnorm CC-BY
op_doi https://doi.org/10.3389/feart.2021.651731.s002
_version_ 1766313102301724672