id ftfloridastunidc:oai:fsu.digital.flvc.org:fsu_661124
record_format openpolar
institution Open Polar
collection Florida State University Digital Library (FSUDL)
op_collection_id ftfloridastunidc
language English
topic Oceanography
Atmospheric sciences
Climatic changes
spellingShingle Oceanography
Atmospheric sciences
Climatic changes
The Origin of the North Atlantic Clod Blob Revisited
topic_facet Oceanography
Atmospheric sciences
Climatic changes
description The cold blob refers to an observationally unprecedented, gyre-scale, record-breaking cold of mean surface temperature over the subpolar North Atlantic. Its anomalous cold feature goes against the rising trend of global mean surface temperature in the context of a warming climate. Observations show that the Atlantic cold blob emerged in early 2014 and can penetrate deeper into the ocean interior beyond 500m depths. A sudden drop in upper ocean heat content is associated with an accumulative increase in freshwater content. Prior works pointed out that intense surface forcing during two consecutive winters was a primary driver. We hypothesize that surface forcing alone is insufficient for the cold blob to persist. Our analysis shows, for the first time, that variations in the net surface heat fluxes cannot explain the decline in upper ocean heat content during 2014–2017. Therefore, surface forcing fails to explain the origin of the cold blob. To investigate alternative mechanisms, non-assimilative simulations based on a coupled ocean-sea ice model (GFDL MOM5/SIS1) with two different atmospheric forcings (MERRA2 and ERA-interim) are employed to examine the transports of mass, heat, and freshwater within the cold blob area. Initial diagnosis verified that both model runs can reproduce the cold blob characteristics at similar magnitudes to Argo observations. Model results show a decreasing trend of heat transport at the southern boundary, implying that reduced poleward ocean heat transport likely accounts for the formation and persistence of the cold blob. This cooling signal from the south is accompanied by a freshening signal. Changes in the residual heat fluxes suggest that reduced warming for the subsurface layer at 100–700 m depths apparently occurred since 2006 before turning into enhanced cooling during late 2013. Variations in the residual freshwater fluxes remain positive for the entire past decade and subsequently result in an accumulative surplus of freshwater content in this area. The model run with incorporated Greenland meltwater estimates sheds light on the relative contribution of meltwater advection. To a great extent, Greenland meltwater can amplify the freshening tendency in the subpolar North Atlantic by approximately up to 200% during the present decade. In the long run, upper ocean cooling and freshening would lead to increased stratification and reduced mixing with deeper waters, therefore enhancing the likelihood that the subsurface cold blob persists. A Dissertation submitted to the Department of Earth, Ocean and Atmospheric Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Fall Semester 2018. November 5, 2018. Air-Sea Interaction, Climate Change, Cold Blob, Greenland Meltwater, Polar-Lower Latitude Linkage, Subpolar North Atlantic Includes bibliographical references. Mark A. Bourassa, Professor Directing Dissertation; James B. Elsner, University Representative; Allan J. Clarke, Committee Member; William K. Dewar, Committee Member; Kevin G. Speer, Committee Member.
author2 Bhatrasataponkul, Tachanat (author)
Bourassa, Mark Allan (professor directing dissertation)
Elsner, James B. (university representative)
Clarke, Allan J. (committee member)
Dewar, William K. (committee member)
Speer, Kevin G. (committee member)
Florida State University (degree granting institution)
College of Arts and Sciences (degree granting college)
Department of Earth, Ocean and Atmospheric Science (degree granting departmentdgg)
format Doctoral or Postdoctoral Thesis
title The Origin of the North Atlantic Clod Blob Revisited
title_short The Origin of the North Atlantic Clod Blob Revisited
title_full The Origin of the North Atlantic Clod Blob Revisited
title_fullStr The Origin of the North Atlantic Clod Blob Revisited
title_full_unstemmed The Origin of the North Atlantic Clod Blob Revisited
title_sort origin of the north atlantic clod blob revisited
publisher Florida State University
url http://purl.flvc.org/fsu/fd/2018_Fall_Bhatrasataponkul_fsu_0071E_14875
http://fsu.digital.flvc.org/islandora/object/fsu%3A661124/datastream/TN/view/Origin%20of%20the%20North%20Atlantic%20Clod%20Blob%20Revisited.jpg
long_lat ENVELOPE(-21.158,-21.158,-80.534,-80.534)
geographic Dewar
Greenland
geographic_facet Dewar
Greenland
genre Greenland
North Atlantic
Sea ice
genre_facet Greenland
North Atlantic
Sea ice
_version_ 1766018310843924480
spelling ftfloridastunidc:oai:fsu.digital.flvc.org:fsu_661124 2023-05-15T16:28:38+02:00 The Origin of the North Atlantic Clod Blob Revisited Bhatrasataponkul, Tachanat (author) Bourassa, Mark Allan (professor directing dissertation) Elsner, James B. (university representative) Clarke, Allan J. (committee member) Dewar, William K. (committee member) Speer, Kevin G. (committee member) Florida State University (degree granting institution) College of Arts and Sciences (degree granting college) Department of Earth, Ocean and Atmospheric Science (degree granting departmentdgg) 1 online resource (70 pages) computer application/pdf http://purl.flvc.org/fsu/fd/2018_Fall_Bhatrasataponkul_fsu_0071E_14875 http://fsu.digital.flvc.org/islandora/object/fsu%3A661124/datastream/TN/view/Origin%20of%20the%20North%20Atlantic%20Clod%20Blob%20Revisited.jpg English eng eng Florida State University Oceanography Atmospheric sciences Climatic changes Text doctoral thesis ftfloridastunidc 2020-08-10T20:31:59Z The cold blob refers to an observationally unprecedented, gyre-scale, record-breaking cold of mean surface temperature over the subpolar North Atlantic. Its anomalous cold feature goes against the rising trend of global mean surface temperature in the context of a warming climate. Observations show that the Atlantic cold blob emerged in early 2014 and can penetrate deeper into the ocean interior beyond 500m depths. A sudden drop in upper ocean heat content is associated with an accumulative increase in freshwater content. Prior works pointed out that intense surface forcing during two consecutive winters was a primary driver. We hypothesize that surface forcing alone is insufficient for the cold blob to persist. Our analysis shows, for the first time, that variations in the net surface heat fluxes cannot explain the decline in upper ocean heat content during 2014–2017. Therefore, surface forcing fails to explain the origin of the cold blob. To investigate alternative mechanisms, non-assimilative simulations based on a coupled ocean-sea ice model (GFDL MOM5/SIS1) with two different atmospheric forcings (MERRA2 and ERA-interim) are employed to examine the transports of mass, heat, and freshwater within the cold blob area. Initial diagnosis verified that both model runs can reproduce the cold blob characteristics at similar magnitudes to Argo observations. Model results show a decreasing trend of heat transport at the southern boundary, implying that reduced poleward ocean heat transport likely accounts for the formation and persistence of the cold blob. This cooling signal from the south is accompanied by a freshening signal. Changes in the residual heat fluxes suggest that reduced warming for the subsurface layer at 100–700 m depths apparently occurred since 2006 before turning into enhanced cooling during late 2013. Variations in the residual freshwater fluxes remain positive for the entire past decade and subsequently result in an accumulative surplus of freshwater content in this area. The model run with incorporated Greenland meltwater estimates sheds light on the relative contribution of meltwater advection. To a great extent, Greenland meltwater can amplify the freshening tendency in the subpolar North Atlantic by approximately up to 200% during the present decade. In the long run, upper ocean cooling and freshening would lead to increased stratification and reduced mixing with deeper waters, therefore enhancing the likelihood that the subsurface cold blob persists. A Dissertation submitted to the Department of Earth, Ocean and Atmospheric Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Fall Semester 2018. November 5, 2018. Air-Sea Interaction, Climate Change, Cold Blob, Greenland Meltwater, Polar-Lower Latitude Linkage, Subpolar North Atlantic Includes bibliographical references. Mark A. Bourassa, Professor Directing Dissertation; James B. Elsner, University Representative; Allan J. Clarke, Committee Member; William K. Dewar, Committee Member; Kevin G. Speer, Committee Member. Doctoral or Postdoctoral Thesis Greenland North Atlantic Sea ice Florida State University Digital Library (FSUDL) Dewar ENVELOPE(-21.158,-21.158,-80.534,-80.534) Greenland