The Effects of Sea Surface Temperature Gradients on Surface Turbulent Fluxes

A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (ΔSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs...

Full description

Bibliographic Details
Other Authors: Steffen, John (authoraut), Bourassa, Mark A. (professor directing thesis), Hart, Robert (committee member), Chagnon, Jeffrey (committee member), Department of Earth, Ocean and Atmospheric Sciences (degree granting department), Florida State University (degree granting institution)
Format: Text
Language:English
Published: Florida State University
Subjects:
Online Access:http://purl.flvc.org/fsu/fd/FSU_migr_etd-9100
http://fsu.digital.flvc.org/islandora/object/fsu%3A254509/datastream/TN/view/Effects%20of%20Sea%20Surface%20Temperature%20Gradients%20on%20Surface%20Turbulent%20Fluxes.jpg
id ftfloridastunidc:oai:fsu.digital.flvc.org:fsu_254509
record_format openpolar
spelling ftfloridastunidc:oai:fsu.digital.flvc.org:fsu_254509 2023-05-15T17:37:12+02:00 The Effects of Sea Surface Temperature Gradients on Surface Turbulent Fluxes Steffen, John (authoraut) Bourassa, Mark A. (professor directing thesis) Hart, Robert (committee member) Chagnon, Jeffrey (committee member) Department of Earth, Ocean and Atmospheric Sciences (degree granting department) Florida State University (degree granting institution) 1 online resource computer application/pdf http://purl.flvc.org/fsu/fd/FSU_migr_etd-9100 http://fsu.digital.flvc.org/islandora/object/fsu%3A254509/datastream/TN/view/Effects%20of%20Sea%20Surface%20Temperature%20Gradients%20on%20Surface%20Turbulent%20Fluxes.jpg English eng eng Florida State University This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them. Earth sciences Oceanography Atmospheric sciences Geophysics Text ftfloridastunidc 2020-08-10T21:50:11Z A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (ΔSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near–surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air–sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air–sea interactions, a flux model was forced with and without SST–induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary–Layer (UWPBL) model. Other input parameters include 2–m air temperature, 2–m dew point temperature, surface pressure (all from ERA–interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between ΔSST and no ΔSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December–January–February (DJF) seasons were analyzed for 1987—1990 and 1999—2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002—2003 DJF seasonal differences in SHF, LHF, and wind stress over the Gulf Stream are 3.86 ± 0.096 W/m2, 6.84 ± 0.186 W/m2, and 0.032 ± 0.0008 N/m2, respectively. In addition, smaller flux differences covering large expanses of the Atlantic and Pacific Oceans are non–negligible for most upper oceanic applications sensitive to multi–decadal changes. Due to these non–linear processes, average changes in surface turbulent fluxes are not zero. A Thesis submitted to the Department of Earth, Ocean, and Atmospheric Science in partial fulfillment of the requirements for the degree of Master of Science. Summer Semester, 2014. June 18, 2014. Includes bibliographical references. Mark A. Bourassa, Professor Directing Thesis; Robert Hart, Committee Member; Jeffrey Chagnon, Committee Member. Text North Atlantic Florida State University Digital Library (FSUDL) Pacific
institution Open Polar
collection Florida State University Digital Library (FSUDL)
op_collection_id ftfloridastunidc
language English
topic Earth sciences
Oceanography
Atmospheric sciences
Geophysics
spellingShingle Earth sciences
Oceanography
Atmospheric sciences
Geophysics
The Effects of Sea Surface Temperature Gradients on Surface Turbulent Fluxes
topic_facet Earth sciences
Oceanography
Atmospheric sciences
Geophysics
description A positive correlation between sea surface temperature (SST) and wind stress perturbation near strong SST gradients (ΔSST) has been observed in different parts of the world ocean, such as the Gulf Stream in the North Atlantic and the Kuroshio Extension east of Japan. These changes in winds and SSTs can modify near–surface stability, surface stress, and latent and sensible heat fluxes. In general, these small scale processes are poorly modeled in Numerical Weather Prediction (NWP) and climate models. Failure to account for these air–sea interactions produces inaccurate values of turbulent fluxes, and therefore a misrepresentation of the energy, moisture, and momentum budgets. Our goal is to determine the change in these surface turbulent fluxes due to overlooking the correlated variability in winds, SSTs, and related variables. To model these air–sea interactions, a flux model was forced with and without SST–induced changes to the surface wind fields. The SST modification to the wind fields is based on a baroclinic argument as implemented by the University of Washington Planetary Boundary–Layer (UWPBL) model. Other input parameters include 2–m air temperature, 2–m dew point temperature, surface pressure (all from ERA–interim), and Reynolds Daily Optimum Interpolation Sea Surface Temperature (OISST). Flux model runs are performed every 6 hours starting in December 2002 and ending in November 2003. From these model outputs, seasonal, monthly, and daily means of the difference between ΔSST and no ΔSST effects on sensible heat flux (SHF), latent heat flux (LHF), and surface stress are calculated. Since the greatest impacts occur during the winter season, six additional December–January–February (DJF) seasons were analyzed for 1987—1990 and 1999—2002. The greatest differences in surface turbulent fluxes are concentrated near strong SST fronts associated with the Gulf Stream and Kuroshio Extension. On average, 2002—2003 DJF seasonal differences in SHF, LHF, and wind stress over the Gulf Stream are 3.86 ± 0.096 W/m2, 6.84 ± 0.186 W/m2, and 0.032 ± 0.0008 N/m2, respectively. In addition, smaller flux differences covering large expanses of the Atlantic and Pacific Oceans are non–negligible for most upper oceanic applications sensitive to multi–decadal changes. Due to these non–linear processes, average changes in surface turbulent fluxes are not zero. A Thesis submitted to the Department of Earth, Ocean, and Atmospheric Science in partial fulfillment of the requirements for the degree of Master of Science. Summer Semester, 2014. June 18, 2014. Includes bibliographical references. Mark A. Bourassa, Professor Directing Thesis; Robert Hart, Committee Member; Jeffrey Chagnon, Committee Member.
author2 Steffen, John (authoraut)
Bourassa, Mark A. (professor directing thesis)
Hart, Robert (committee member)
Chagnon, Jeffrey (committee member)
Department of Earth, Ocean and Atmospheric Sciences (degree granting department)
Florida State University (degree granting institution)
format Text
title The Effects of Sea Surface Temperature Gradients on Surface Turbulent Fluxes
title_short The Effects of Sea Surface Temperature Gradients on Surface Turbulent Fluxes
title_full The Effects of Sea Surface Temperature Gradients on Surface Turbulent Fluxes
title_fullStr The Effects of Sea Surface Temperature Gradients on Surface Turbulent Fluxes
title_full_unstemmed The Effects of Sea Surface Temperature Gradients on Surface Turbulent Fluxes
title_sort effects of sea surface temperature gradients on surface turbulent fluxes
publisher Florida State University
url http://purl.flvc.org/fsu/fd/FSU_migr_etd-9100
http://fsu.digital.flvc.org/islandora/object/fsu%3A254509/datastream/TN/view/Effects%20of%20Sea%20Surface%20Temperature%20Gradients%20on%20Surface%20Turbulent%20Fluxes.jpg
geographic Pacific
geographic_facet Pacific
genre North Atlantic
genre_facet North Atlantic
op_rights This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.
_version_ 1766136988267708416