A minimal machine-learning glacier mass balance model

Glacier retreat presents significant environmental and social challenges. Understanding the local impacts of climatic drivers on glacier evolution is crucial, with mass balance being a central concept. This study introduces miniML-MB, a new minimal machine-learning model designed to estimate annual...

Full description

Bibliographic Details
Main Authors: van der Meer, Marijn, id_orcid:0 000-0002-7604-4494, Zekollari, Harry, id_orcid:0 000-0002-7443-4034, Huss, Matthias, id_orcid:0 000-0002-2377-6923, Bolibar, Jordi, Hauknes Sjursen, Kamilla, Farinotti, Daniel, id_orcid:0 000-0003-3417-4570
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus 2025
Subjects:
Online Access:https://hdl.handle.net/20.500.11850/724724
https://doi.org/10.3929/ethz-b-000724724
_version_ 1828046502903152640
author van der Meer, Marijn
id_orcid:0 000-0002-7604-4494
Zekollari, Harry
id_orcid:0 000-0002-7443-4034
Huss, Matthias
id_orcid:0 000-0002-2377-6923
Bolibar, Jordi
Hauknes Sjursen, Kamilla
Farinotti, Daniel
id_orcid:0 000-0003-3417-4570
author_facet van der Meer, Marijn
id_orcid:0 000-0002-7604-4494
Zekollari, Harry
id_orcid:0 000-0002-7443-4034
Huss, Matthias
id_orcid:0 000-0002-2377-6923
Bolibar, Jordi
Hauknes Sjursen, Kamilla
Farinotti, Daniel
id_orcid:0 000-0003-3417-4570
author_sort van der Meer, Marijn
collection ETH Zürich Research Collection
description Glacier retreat presents significant environmental and social challenges. Understanding the local impacts of climatic drivers on glacier evolution is crucial, with mass balance being a central concept. This study introduces miniML-MB, a new minimal machine-learning model designed to estimate annual point surface mass balance (PMB) for very small datasets. Based on an eXtreme Gradient Boosting (XGBoost) architecture, miniML-MB is applied to model PMB at individual sites in the Swiss Alps, emphasising the need for an appropriate training framework and dimensionality reduction techniques. A substantial added value of miniML-MB is its data-driven identification of key climatic drivers of local mass balance. The best PMB prediction performance was achieved with two predictors: mean air temperature (May–August) and total precipitation (October–February). miniML-MB models PMB accurately from 1961 to 2021, with a mean absolute error (MAE) of 0.417 m w.e. across all sites. Notably, miniML-MB demonstrates similar and, in most cases, superior predictive capabilities compared to a simple positive degree-day (PDD) model (MAE of 0.541 m w.e.). Compared to the PDD model, miniML-MB is less effective at reproducing extreme mass balance values (e.g. 2022) that fall outside its training range. As such, miniML-MB shows promise as a gap-filling tool for sites with incomplete PMB measurements as long as the missing year's climate conditions are within the training range. This study underscores potential means for further refinement and broader applications of data-driven approaches in glaciology. ISSN:1994-0416 ISSN:1994-0424
format Article in Journal/Newspaper
genre The Cryosphere
genre_facet The Cryosphere
id ftethz:oai:www.research-collection.ethz.ch:20.500.11850/724724
institution Open Polar
language English
op_collection_id ftethz
op_doi https://doi.org/20.500.11850/72472410.3929/ethz-b-00072472410.5194/tc-19-805-2025
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-19-805-2025
info:eu-repo/semantics/altIdentifier/wos/001427016000001
http://hdl.handle.net/20.500.11850/724724
op_rights info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International
op_source The Cryosphere, 19 (2)
publishDate 2025
publisher Copernicus
record_format openpolar
spelling ftethz:oai:www.research-collection.ethz.ch:20.500.11850/724724 2025-03-30T15:28:58+00:00 A minimal machine-learning glacier mass balance model van der Meer, Marijn id_orcid:0 000-0002-7604-4494 Zekollari, Harry id_orcid:0 000-0002-7443-4034 Huss, Matthias id_orcid:0 000-0002-2377-6923 Bolibar, Jordi Hauknes Sjursen, Kamilla Farinotti, Daniel id_orcid:0 000-0003-3417-4570 2025-02-21 application/application/pdf https://hdl.handle.net/20.500.11850/724724 https://doi.org/10.3929/ethz-b-000724724 en eng Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-19-805-2025 info:eu-repo/semantics/altIdentifier/wos/001427016000001 http://hdl.handle.net/20.500.11850/724724 info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International The Cryosphere, 19 (2) info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2025 ftethz https://doi.org/20.500.11850/72472410.3929/ethz-b-00072472410.5194/tc-19-805-2025 2025-03-05T22:09:18Z Glacier retreat presents significant environmental and social challenges. Understanding the local impacts of climatic drivers on glacier evolution is crucial, with mass balance being a central concept. This study introduces miniML-MB, a new minimal machine-learning model designed to estimate annual point surface mass balance (PMB) for very small datasets. Based on an eXtreme Gradient Boosting (XGBoost) architecture, miniML-MB is applied to model PMB at individual sites in the Swiss Alps, emphasising the need for an appropriate training framework and dimensionality reduction techniques. A substantial added value of miniML-MB is its data-driven identification of key climatic drivers of local mass balance. The best PMB prediction performance was achieved with two predictors: mean air temperature (May–August) and total precipitation (October–February). miniML-MB models PMB accurately from 1961 to 2021, with a mean absolute error (MAE) of 0.417 m w.e. across all sites. Notably, miniML-MB demonstrates similar and, in most cases, superior predictive capabilities compared to a simple positive degree-day (PDD) model (MAE of 0.541 m w.e.). Compared to the PDD model, miniML-MB is less effective at reproducing extreme mass balance values (e.g. 2022) that fall outside its training range. As such, miniML-MB shows promise as a gap-filling tool for sites with incomplete PMB measurements as long as the missing year's climate conditions are within the training range. This study underscores potential means for further refinement and broader applications of data-driven approaches in glaciology. ISSN:1994-0416 ISSN:1994-0424 Article in Journal/Newspaper The Cryosphere ETH Zürich Research Collection
spellingShingle van der Meer, Marijn
id_orcid:0 000-0002-7604-4494
Zekollari, Harry
id_orcid:0 000-0002-7443-4034
Huss, Matthias
id_orcid:0 000-0002-2377-6923
Bolibar, Jordi
Hauknes Sjursen, Kamilla
Farinotti, Daniel
id_orcid:0 000-0003-3417-4570
A minimal machine-learning glacier mass balance model
title A minimal machine-learning glacier mass balance model
title_full A minimal machine-learning glacier mass balance model
title_fullStr A minimal machine-learning glacier mass balance model
title_full_unstemmed A minimal machine-learning glacier mass balance model
title_short A minimal machine-learning glacier mass balance model
title_sort minimal machine-learning glacier mass balance model
url https://hdl.handle.net/20.500.11850/724724
https://doi.org/10.3929/ethz-b-000724724