Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya

Landslides are a major geohazard that cause thousands of fatalities every year. Despite their importance, identifying unstable slopes and forecasting collapses remains a major challenge. In this study, we use the 7 February 2021 Chamoli rock–ice avalanche as a data-rich example to investigate the po...

Full description

Bibliographic Details
Main Authors: de Vries, Maximillian Van Wyk, Bhushan, Shashank, Jacquemart, Mylène, id_orcid:0 000-0003-2501-7645, Deschamps-Berger, César, Berthier, Etienne, Gascoin, Simon, Shean, David E., Shugar, Dan H., Kääb, Andreas
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus 2022
Subjects:
Ice
Online Access:https://hdl.handle.net/20.500.11850/577291
https://doi.org/10.3929/ethz-b-000577291
id ftethz:oai:www.research-collection.ethz.ch:20.500.11850/577291
record_format openpolar
spelling ftethz:oai:www.research-collection.ethz.ch:20.500.11850/577291 2023-08-27T04:09:56+02:00 Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya de Vries, Maximillian Van Wyk Bhushan, Shashank Jacquemart, Mylène id_orcid:0 000-0003-2501-7645 Deschamps-Berger, César Berthier, Etienne Gascoin, Simon Shean, David E. Shugar, Dan H. Kääb, Andreas 2022 application/application/pdf https://hdl.handle.net/20.500.11850/577291 https://doi.org/10.3929/ethz-b-000577291 en eng Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/nhess-22-3309-2022 info:eu-repo/semantics/altIdentifier/wos/000866555600001 info:eu-repo/grantAgreement/SNF/Projekte MINT/184634 http://hdl.handle.net/20.500.11850/577291 doi:10.3929/ethz-b-000577291 info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International Natural Hazards and Earth System Sciences, 22 (10) info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftethz https://doi.org/20.500.11850/57729110.3929/ethz-b-00057729110.5194/nhess-22-3309-2022 2023-08-06T23:50:43Z Landslides are a major geohazard that cause thousands of fatalities every year. Despite their importance, identifying unstable slopes and forecasting collapses remains a major challenge. In this study, we use the 7 February 2021 Chamoli rock–ice avalanche as a data-rich example to investigate the potential of remotely sensed datasets for the assessment of slope stability. We investigate imagery over the 3 decades preceding collapse and assess the precursory signs exhibited by this slope prior to the catastrophic collapse. We evaluate monthly slope motion from 2015 to 2021 through feature tracking of high-resolution optical satellite imagery. We then combine these data with a time series of pre- and post-event digital elevation models (DEMs), which we use to evaluate elevation change over the same area. Both datasets show that the 26.9×106 m3 collapse block moved over 10 m horizontally and vertically in the 5 years preceding collapse, with particularly rapid motion occurring in the summers of 2017 and 2018. We propose that the collapse results from a combination of snow loading in a deep headwall crack and permafrost degradation in the heavily jointed bedrock. Despite observing a clear precursory signal, we find that the timing of the Chamoli rock–ice avalanche could likely not have been forecast from satellite data alone. Our results highlight the potential of remotely sensed imagery for assessing landslide hazard in remote areas, but that challenges remain for operational hazard monitoring. ISSN:1561-8633 ISSN:1684-9981 Article in Journal/Newspaper Ice permafrost ETH Zürich Research Collection Indian
institution Open Polar
collection ETH Zürich Research Collection
op_collection_id ftethz
language English
description Landslides are a major geohazard that cause thousands of fatalities every year. Despite their importance, identifying unstable slopes and forecasting collapses remains a major challenge. In this study, we use the 7 February 2021 Chamoli rock–ice avalanche as a data-rich example to investigate the potential of remotely sensed datasets for the assessment of slope stability. We investigate imagery over the 3 decades preceding collapse and assess the precursory signs exhibited by this slope prior to the catastrophic collapse. We evaluate monthly slope motion from 2015 to 2021 through feature tracking of high-resolution optical satellite imagery. We then combine these data with a time series of pre- and post-event digital elevation models (DEMs), which we use to evaluate elevation change over the same area. Both datasets show that the 26.9×106 m3 collapse block moved over 10 m horizontally and vertically in the 5 years preceding collapse, with particularly rapid motion occurring in the summers of 2017 and 2018. We propose that the collapse results from a combination of snow loading in a deep headwall crack and permafrost degradation in the heavily jointed bedrock. Despite observing a clear precursory signal, we find that the timing of the Chamoli rock–ice avalanche could likely not have been forecast from satellite data alone. Our results highlight the potential of remotely sensed imagery for assessing landslide hazard in remote areas, but that challenges remain for operational hazard monitoring. ISSN:1561-8633 ISSN:1684-9981
format Article in Journal/Newspaper
author de Vries, Maximillian Van Wyk
Bhushan, Shashank
Jacquemart, Mylène
id_orcid:0 000-0003-2501-7645
Deschamps-Berger, César
Berthier, Etienne
Gascoin, Simon
Shean, David E.
Shugar, Dan H.
Kääb, Andreas
spellingShingle de Vries, Maximillian Van Wyk
Bhushan, Shashank
Jacquemart, Mylène
id_orcid:0 000-0003-2501-7645
Deschamps-Berger, César
Berthier, Etienne
Gascoin, Simon
Shean, David E.
Shugar, Dan H.
Kääb, Andreas
Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
author_facet de Vries, Maximillian Van Wyk
Bhushan, Shashank
Jacquemart, Mylène
id_orcid:0 000-0003-2501-7645
Deschamps-Berger, César
Berthier, Etienne
Gascoin, Simon
Shean, David E.
Shugar, Dan H.
Kääb, Andreas
author_sort de Vries, Maximillian Van Wyk
title Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
title_short Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
title_full Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
title_fullStr Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
title_full_unstemmed Pre-collapse motion of the February 2021 Chamoli rock-ice avalanche, Indian Himalaya
title_sort pre-collapse motion of the february 2021 chamoli rock-ice avalanche, indian himalaya
publisher Copernicus
publishDate 2022
url https://hdl.handle.net/20.500.11850/577291
https://doi.org/10.3929/ethz-b-000577291
geographic Indian
geographic_facet Indian
genre Ice
permafrost
genre_facet Ice
permafrost
op_source Natural Hazards and Earth System Sciences, 22 (10)
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/nhess-22-3309-2022
info:eu-repo/semantics/altIdentifier/wos/000866555600001
info:eu-repo/grantAgreement/SNF/Projekte MINT/184634
http://hdl.handle.net/20.500.11850/577291
doi:10.3929/ethz-b-000577291
op_rights info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International
op_doi https://doi.org/20.500.11850/57729110.3929/ethz-b-00057729110.5194/nhess-22-3309-2022
_version_ 1775351627320918016