Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke

A record-breaking stratospheric ozone loss was observed over the Arctic and Antarctica in 2020. Strong ozone depletion occurred over Antarctica in 2021 as well. The ozone holes developed in smoke-polluted air. In this article, the impact of Siberian and Australian wildfire smoke (dominated by organi...

Full description

Bibliographic Details
Main Authors: Ansmann, Albert, Ohneiser, Kevin, Chudnovsky, Alexandra, Knopf, Daniel A., Eloranta, Edwin W., Villanueva, Diego, Seifert, Patric, Radenz, Martin, Barja, Boris, Zamorano, Félix, Jimenez, Cristofer, Engelmann, Ronny, Baars, Holger, Griesche, Hannes, Hofer, Julian, Althausen, Dietrich, Wandinger, Ulla
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus 2022
Subjects:
Online Access:https://hdl.handle.net/20.500.11850/570895
https://doi.org/10.3929/ethz-b-000570895
id ftethz:oai:www.research-collection.ethz.ch:20.500.11850/570895
record_format openpolar
spelling ftethz:oai:www.research-collection.ethz.ch:20.500.11850/570895 2023-05-15T13:41:37+02:00 Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke Ansmann, Albert Ohneiser, Kevin Chudnovsky, Alexandra Knopf, Daniel A. Eloranta, Edwin W. Villanueva, Diego Seifert, Patric Radenz, Martin Barja, Boris Zamorano, Félix Jimenez, Cristofer Engelmann, Ronny Baars, Holger Griesche, Hannes Hofer, Julian Althausen, Dietrich Wandinger, Ulla 2022 application/application/pdf https://hdl.handle.net/20.500.11850/570895 https://doi.org/10.3929/ethz-b-000570895 en eng Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-22-11701-2022 info:eu-repo/semantics/altIdentifier/wos/000851385800001 http://hdl.handle.net/20.500.11850/570895 doi:10.3929/ethz-b-000570895 info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International CC-BY Atmospheric Chemistry and Physics, 22 (17) info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2022 ftethz https://doi.org/20.500.11850/570895 https://doi.org/10.3929/ethz-b-000570895 https://doi.org/10.5194/acp-22-11701-2022 2023-02-13T01:11:54Z A record-breaking stratospheric ozone loss was observed over the Arctic and Antarctica in 2020. Strong ozone depletion occurred over Antarctica in 2021 as well. The ozone holes developed in smoke-polluted air. In this article, the impact of Siberian and Australian wildfire smoke (dominated by organic aerosol) on the extraordinarily strong ozone reduction is discussed. The study is based on aerosol lidar observations in the North Pole region (October 2019–May 2020) and over Punta Arenas in southern Chile at 53.2° S (January 2020–November 2021) as well as on respective NDACC (Network for the Detection of Atmospheric Composition Change) ozone profile observations in the Arctic (Ny-Ålesund) and Antarctica (Neumayer and South Pole stations) in 2020 and 2021. We present a conceptual approach on how the smoke may have influenced the formation of polar stratospheric clouds (PSCs), which are of key importance in the ozone-depleting processes. The main results are as follows: (a) the direct impact of wildfire smoke below the PSC height range (at 10–12 km) on ozone reduction seems to be similar to well-known volcanic sulfate aerosol effects. At heights of 10–12 km, smoke particle surface area (SA) concentrations of 5–7 µm2 cm−3 (Antarctica, spring 2021) and 6–10 µm2 cm−3 (Arctic, spring 2020) were correlated with an ozone reduction in terms of ozone partial pressure of 0.4–1.2 mPa (about 30 % further ozone reduction over Antarctica) and of 2–3.5 mPa (Arctic, 20 %–30 % reduction with respect to the long-term springtime mean). (b) Within the PSC height range, we found indications that smoke was able to slightly increase the PSC particle number and surface area concentration. In particular, a smoke-related additional ozone loss of 1–2 mPa (10 %–20 % contribution to the total ozone loss over Antarctica) was observed in the 14–23 km PSC height range in September–October 2020 and 2021. Smoke particle number concentrations ranged from 10 to 100 cm−3 and were about a factor of 10 (in 2020) and 5 (in 2021) above the stratospheric ... Article in Journal/Newspaper Antarc* Antarctic Antarctica Arctic North Pole Ny Ålesund Ny-Ålesund South pole South pole ETH Zürich Research Collection Arctic Antarctic Ny-Ålesund Neumayer South Pole North Pole
institution Open Polar
collection ETH Zürich Research Collection
op_collection_id ftethz
language English
description A record-breaking stratospheric ozone loss was observed over the Arctic and Antarctica in 2020. Strong ozone depletion occurred over Antarctica in 2021 as well. The ozone holes developed in smoke-polluted air. In this article, the impact of Siberian and Australian wildfire smoke (dominated by organic aerosol) on the extraordinarily strong ozone reduction is discussed. The study is based on aerosol lidar observations in the North Pole region (October 2019–May 2020) and over Punta Arenas in southern Chile at 53.2° S (January 2020–November 2021) as well as on respective NDACC (Network for the Detection of Atmospheric Composition Change) ozone profile observations in the Arctic (Ny-Ålesund) and Antarctica (Neumayer and South Pole stations) in 2020 and 2021. We present a conceptual approach on how the smoke may have influenced the formation of polar stratospheric clouds (PSCs), which are of key importance in the ozone-depleting processes. The main results are as follows: (a) the direct impact of wildfire smoke below the PSC height range (at 10–12 km) on ozone reduction seems to be similar to well-known volcanic sulfate aerosol effects. At heights of 10–12 km, smoke particle surface area (SA) concentrations of 5–7 µm2 cm−3 (Antarctica, spring 2021) and 6–10 µm2 cm−3 (Arctic, spring 2020) were correlated with an ozone reduction in terms of ozone partial pressure of 0.4–1.2 mPa (about 30 % further ozone reduction over Antarctica) and of 2–3.5 mPa (Arctic, 20 %–30 % reduction with respect to the long-term springtime mean). (b) Within the PSC height range, we found indications that smoke was able to slightly increase the PSC particle number and surface area concentration. In particular, a smoke-related additional ozone loss of 1–2 mPa (10 %–20 % contribution to the total ozone loss over Antarctica) was observed in the 14–23 km PSC height range in September–October 2020 and 2021. Smoke particle number concentrations ranged from 10 to 100 cm−3 and were about a factor of 10 (in 2020) and 5 (in 2021) above the stratospheric ...
format Article in Journal/Newspaper
author Ansmann, Albert
Ohneiser, Kevin
Chudnovsky, Alexandra
Knopf, Daniel A.
Eloranta, Edwin W.
Villanueva, Diego
Seifert, Patric
Radenz, Martin
Barja, Boris
Zamorano, Félix
Jimenez, Cristofer
Engelmann, Ronny
Baars, Holger
Griesche, Hannes
Hofer, Julian
Althausen, Dietrich
Wandinger, Ulla
spellingShingle Ansmann, Albert
Ohneiser, Kevin
Chudnovsky, Alexandra
Knopf, Daniel A.
Eloranta, Edwin W.
Villanueva, Diego
Seifert, Patric
Radenz, Martin
Barja, Boris
Zamorano, Félix
Jimenez, Cristofer
Engelmann, Ronny
Baars, Holger
Griesche, Hannes
Hofer, Julian
Althausen, Dietrich
Wandinger, Ulla
Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke
author_facet Ansmann, Albert
Ohneiser, Kevin
Chudnovsky, Alexandra
Knopf, Daniel A.
Eloranta, Edwin W.
Villanueva, Diego
Seifert, Patric
Radenz, Martin
Barja, Boris
Zamorano, Félix
Jimenez, Cristofer
Engelmann, Ronny
Baars, Holger
Griesche, Hannes
Hofer, Julian
Althausen, Dietrich
Wandinger, Ulla
author_sort Ansmann, Albert
title Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke
title_short Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke
title_full Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke
title_fullStr Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke
title_full_unstemmed Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke
title_sort ozone depletion in the arctic and antarctic stratosphere induced by wildfire smoke
publisher Copernicus
publishDate 2022
url https://hdl.handle.net/20.500.11850/570895
https://doi.org/10.3929/ethz-b-000570895
geographic Arctic
Antarctic
Ny-Ålesund
Neumayer
South Pole
North Pole
geographic_facet Arctic
Antarctic
Ny-Ålesund
Neumayer
South Pole
North Pole
genre Antarc*
Antarctic
Antarctica
Arctic
North Pole
Ny Ålesund
Ny-Ålesund
South pole
South pole
genre_facet Antarc*
Antarctic
Antarctica
Arctic
North Pole
Ny Ålesund
Ny-Ålesund
South pole
South pole
op_source Atmospheric Chemistry and Physics, 22 (17)
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-22-11701-2022
info:eu-repo/semantics/altIdentifier/wos/000851385800001
http://hdl.handle.net/20.500.11850/570895
doi:10.3929/ethz-b-000570895
op_rights info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International
op_rightsnorm CC-BY
op_doi https://doi.org/20.500.11850/570895
https://doi.org/10.3929/ethz-b-000570895
https://doi.org/10.5194/acp-22-11701-2022
_version_ 1766153056321273856