Chromium biogeochemistry and stable isotope distribution in the Southern Ocean
Despite the potential of stable chromium (Cr) isotope compositions as a proxy for past changes in oceanic redox conditions, a detailed understanding of the processes that govern their spatial distribution in the modern ocean is still lacking. Here, we report seawater Cr isotope compositions and conc...
Main Authors: | , , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Elsevier
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/20.500.11850/367419 https://doi.org/10.3929/ethz-b-000367419 |
id |
ftethz:oai:www.research-collection.ethz.ch:20.500.11850/367419 |
---|---|
record_format |
openpolar |
spelling |
ftethz:oai:www.research-collection.ethz.ch:20.500.11850/367419 2023-05-15T13:53:55+02:00 Chromium biogeochemistry and stable isotope distribution in the Southern Ocean Rickli, Jörg Janssen, David J. Hassler, Christel Ellwood, Michael J. Jaccard, Samuel L. 2019-10-01 application/application/pdf https://hdl.handle.net/20.500.11850/367419 https://doi.org/10.3929/ethz-b-000367419 en eng Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.gca.2019.07.033 info:eu-repo/semantics/altIdentifier/wos/000481616700011 http://hdl.handle.net/20.500.11850/367419 doi:10.3929/ethz-b-000367419 info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International CC-BY-NC-ND Geochimica et Cosmochimica Acta, 262 Seawater Chromium isotopes Southern Ocean info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion 2019 ftethz https://doi.org/20.500.11850/367419 https://doi.org/10.3929/ethz-b-000367419 https://doi.org/10.1016/j.gca.2019.07.033 2023-02-13T00:49:18Z Despite the potential of stable chromium (Cr) isotope compositions as a proxy for past changes in oceanic redox conditions, a detailed understanding of the processes that govern their spatial distribution in the modern ocean is still lacking. Here, we report seawater Cr isotope compositions and concentrations from the uppermost 1000 m of the water column in the Southern Ocean. The survey includes a cross-frontal transect from Tasmania to Antarctica, sites near the Antarctic ice-edge and in the vicinity of the Balleny Islands, as well as sites in the Drake Passage. Although a coastal influence is clearly visible in the silicon-nitrate relationship at the stations neighbouring the Balleny Islands, close to the Mertz Glacier and adjacent to the western Antarctic Peninsula, seawater δ53Cr and Cr concentrations remain largely unaffected. As for the coastal sites, Cr depletion and isotopic shifts are also virtually absent in Antarctic and Subantarctic surface waters of the open ocean. Biological uptake of Cr and/or scavenging of Cr onto sinking particles are apparently not strong enough to induce water column variability. Contrasting with the small variations in δ53Cr and Cr concentrations at each site, there are, however, systematic meridional changes. The seawater samples show an increase in Cr concentrations and a parallel decrease in δ53Cr southwards from the Subantarctic across the Polar Frontal into the Antarctic Zone. Chromium concentrations and δ53Cr are, however, uniform at all stations south of the Polar Front. The spatial pattern is consistent with the mixing of Southern Ocean sourced Cr with an isotopically heavier Cr pool from northward of the studied area, as evidenced by strong correlations of Cr and δ53Cr with salinity at the level of Subantarctic Mode Water and at shallower levels. The heavy δ53Cr signature of the northerly Cr pool could either result from Cr cycling in the subtropical gyre or originate in oxygen minimum zones. On a regional scale, δ53Cr is strongly correlated with phosphate ... Article in Journal/Newspaper Antarc* Antarctic Antarctic Peninsula Antarctica Balleny Islands Drake Passage Mertz Glacier Southern Ocean ETH Zürich Research Collection Antarctic Antarctic Peninsula Balleny Islands Drake Passage Mertz Glacier ENVELOPE(144.500,144.500,-67.667,-67.667) Southern Ocean The Antarctic |
institution |
Open Polar |
collection |
ETH Zürich Research Collection |
op_collection_id |
ftethz |
language |
English |
topic |
Seawater Chromium isotopes Southern Ocean |
spellingShingle |
Seawater Chromium isotopes Southern Ocean Rickli, Jörg Janssen, David J. Hassler, Christel Ellwood, Michael J. Jaccard, Samuel L. Chromium biogeochemistry and stable isotope distribution in the Southern Ocean |
topic_facet |
Seawater Chromium isotopes Southern Ocean |
description |
Despite the potential of stable chromium (Cr) isotope compositions as a proxy for past changes in oceanic redox conditions, a detailed understanding of the processes that govern their spatial distribution in the modern ocean is still lacking. Here, we report seawater Cr isotope compositions and concentrations from the uppermost 1000 m of the water column in the Southern Ocean. The survey includes a cross-frontal transect from Tasmania to Antarctica, sites near the Antarctic ice-edge and in the vicinity of the Balleny Islands, as well as sites in the Drake Passage. Although a coastal influence is clearly visible in the silicon-nitrate relationship at the stations neighbouring the Balleny Islands, close to the Mertz Glacier and adjacent to the western Antarctic Peninsula, seawater δ53Cr and Cr concentrations remain largely unaffected. As for the coastal sites, Cr depletion and isotopic shifts are also virtually absent in Antarctic and Subantarctic surface waters of the open ocean. Biological uptake of Cr and/or scavenging of Cr onto sinking particles are apparently not strong enough to induce water column variability. Contrasting with the small variations in δ53Cr and Cr concentrations at each site, there are, however, systematic meridional changes. The seawater samples show an increase in Cr concentrations and a parallel decrease in δ53Cr southwards from the Subantarctic across the Polar Frontal into the Antarctic Zone. Chromium concentrations and δ53Cr are, however, uniform at all stations south of the Polar Front. The spatial pattern is consistent with the mixing of Southern Ocean sourced Cr with an isotopically heavier Cr pool from northward of the studied area, as evidenced by strong correlations of Cr and δ53Cr with salinity at the level of Subantarctic Mode Water and at shallower levels. The heavy δ53Cr signature of the northerly Cr pool could either result from Cr cycling in the subtropical gyre or originate in oxygen minimum zones. On a regional scale, δ53Cr is strongly correlated with phosphate ... |
format |
Article in Journal/Newspaper |
author |
Rickli, Jörg Janssen, David J. Hassler, Christel Ellwood, Michael J. Jaccard, Samuel L. |
author_facet |
Rickli, Jörg Janssen, David J. Hassler, Christel Ellwood, Michael J. Jaccard, Samuel L. |
author_sort |
Rickli, Jörg |
title |
Chromium biogeochemistry and stable isotope distribution in the Southern Ocean |
title_short |
Chromium biogeochemistry and stable isotope distribution in the Southern Ocean |
title_full |
Chromium biogeochemistry and stable isotope distribution in the Southern Ocean |
title_fullStr |
Chromium biogeochemistry and stable isotope distribution in the Southern Ocean |
title_full_unstemmed |
Chromium biogeochemistry and stable isotope distribution in the Southern Ocean |
title_sort |
chromium biogeochemistry and stable isotope distribution in the southern ocean |
publisher |
Elsevier |
publishDate |
2019 |
url |
https://hdl.handle.net/20.500.11850/367419 https://doi.org/10.3929/ethz-b-000367419 |
long_lat |
ENVELOPE(144.500,144.500,-67.667,-67.667) |
geographic |
Antarctic Antarctic Peninsula Balleny Islands Drake Passage Mertz Glacier Southern Ocean The Antarctic |
geographic_facet |
Antarctic Antarctic Peninsula Balleny Islands Drake Passage Mertz Glacier Southern Ocean The Antarctic |
genre |
Antarc* Antarctic Antarctic Peninsula Antarctica Balleny Islands Drake Passage Mertz Glacier Southern Ocean |
genre_facet |
Antarc* Antarctic Antarctic Peninsula Antarctica Balleny Islands Drake Passage Mertz Glacier Southern Ocean |
op_source |
Geochimica et Cosmochimica Acta, 262 |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.gca.2019.07.033 info:eu-repo/semantics/altIdentifier/wos/000481616700011 http://hdl.handle.net/20.500.11850/367419 doi:10.3929/ethz-b-000367419 |
op_rights |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International |
op_rightsnorm |
CC-BY-NC-ND |
op_doi |
https://doi.org/20.500.11850/367419 https://doi.org/10.3929/ethz-b-000367419 https://doi.org/10.1016/j.gca.2019.07.033 |
_version_ |
1766259398535020544 |