Cross validation of a multi-modal dataset describing temperature-induced rock slope dynamics

Rock slope destabilization due to warming or thawing permafrost poses a risk to the safety of local communities and infrastructure in populated mountain regions. The analysis of fracture kinematics in the context of local temperature evolution in the longer-term is a common approach aiming to identi...

Full description

Bibliographic Details
Main Authors: Weber, Samuel, Beutel, Jan, Gruber, Stephan, Hasler, Andreas, Meyer, Matthias, Vieli, Andreas
Format: Conference Object
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/20.500.11850/363439
https://doi.org/10.3929/ethz-b-000363439
id ftethz:oai:www.research-collection.ethz.ch:20.500.11850/363439
record_format openpolar
spelling ftethz:oai:www.research-collection.ethz.ch:20.500.11850/363439 2023-05-15T17:57:34+02:00 Cross validation of a multi-modal dataset describing temperature-induced rock slope dynamics Weber, Samuel Beutel, Jan Gruber, Stephan Hasler, Andreas Meyer, Matthias Vieli, Andreas 2019-09-11 application/application/pdf https://hdl.handle.net/20.500.11850/363439 https://doi.org/10.3929/ethz-b-000363439 en eng http://hdl.handle.net/20.500.11850/363439 doi:10.3929/ethz-b-000363439 info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International CC-BY info:eu-repo/semantics/conferenceObject Conference Poster info:eu-repo/semantics/acceptedVersion 2019 ftethz https://doi.org/20.500.11850/363439 https://doi.org/10.3929/ethz-b-000363439 2022-04-25T13:54:48Z Rock slope destabilization due to warming or thawing permafrost poses a risk to the safety of local communities and infrastructure in populated mountain regions. The analysis of fracture kinematics in the context of local temperature evolution in the longer-term is a common approach aiming to identify its forcing (e.g. Wegmann and Gudmundsson, 1999, Matsuoka and Murton, 2008, Blikra and Christiansen, 2014). Hasler et al. (2012) and Weber et al. (2017) analyzed fracture dilatation data measured at Matterhorn Hörnligrat at 3500 m a.s.l. and suggest thawing related processes, such as meltwater percolation into fractures to cause irreversible displacement. However, this finding so far has not been backed up by data from different instruments or analysis methods. Hence, misinterpretation of the existing data can not reliably be excluded. Based on further data consisting of surface displacements measured with D-GPS, inclinometers, ambient seismic vibrations and ground resistivity captured and compiled over a period of ten years, we apply a multi-data cross validation technique to detect and quantify temperature-induced rock slope dynamics and identify the components of derived process knowledge that predict behavior across differing observation methods. The combined analysis of this multi-modal dataset allows to further develop and analyse our limited understanding of the dominant processes governing rock slope stability, in our case a steep bedrock mountain permafrost buttress. Based on this evidence we conclude that the kinematics observed at the surface in the winter/refreezing period is negligible compared to those observed during spring initiated by the thawing and mobilization of fluid water w.r.t. destabilization and precursory signs of rockfall at a larger scale. Therefore, future research should focus on the quantification of water supply, distribution and mobility both in the frozen and fluid state. Conference Object permafrost ETH Zürich Research Collection Buttress ENVELOPE(-57.083,-57.083,-63.550,-63.550)
institution Open Polar
collection ETH Zürich Research Collection
op_collection_id ftethz
language English
description Rock slope destabilization due to warming or thawing permafrost poses a risk to the safety of local communities and infrastructure in populated mountain regions. The analysis of fracture kinematics in the context of local temperature evolution in the longer-term is a common approach aiming to identify its forcing (e.g. Wegmann and Gudmundsson, 1999, Matsuoka and Murton, 2008, Blikra and Christiansen, 2014). Hasler et al. (2012) and Weber et al. (2017) analyzed fracture dilatation data measured at Matterhorn Hörnligrat at 3500 m a.s.l. and suggest thawing related processes, such as meltwater percolation into fractures to cause irreversible displacement. However, this finding so far has not been backed up by data from different instruments or analysis methods. Hence, misinterpretation of the existing data can not reliably be excluded. Based on further data consisting of surface displacements measured with D-GPS, inclinometers, ambient seismic vibrations and ground resistivity captured and compiled over a period of ten years, we apply a multi-data cross validation technique to detect and quantify temperature-induced rock slope dynamics and identify the components of derived process knowledge that predict behavior across differing observation methods. The combined analysis of this multi-modal dataset allows to further develop and analyse our limited understanding of the dominant processes governing rock slope stability, in our case a steep bedrock mountain permafrost buttress. Based on this evidence we conclude that the kinematics observed at the surface in the winter/refreezing period is negligible compared to those observed during spring initiated by the thawing and mobilization of fluid water w.r.t. destabilization and precursory signs of rockfall at a larger scale. Therefore, future research should focus on the quantification of water supply, distribution and mobility both in the frozen and fluid state.
format Conference Object
author Weber, Samuel
Beutel, Jan
Gruber, Stephan
Hasler, Andreas
Meyer, Matthias
Vieli, Andreas
spellingShingle Weber, Samuel
Beutel, Jan
Gruber, Stephan
Hasler, Andreas
Meyer, Matthias
Vieli, Andreas
Cross validation of a multi-modal dataset describing temperature-induced rock slope dynamics
author_facet Weber, Samuel
Beutel, Jan
Gruber, Stephan
Hasler, Andreas
Meyer, Matthias
Vieli, Andreas
author_sort Weber, Samuel
title Cross validation of a multi-modal dataset describing temperature-induced rock slope dynamics
title_short Cross validation of a multi-modal dataset describing temperature-induced rock slope dynamics
title_full Cross validation of a multi-modal dataset describing temperature-induced rock slope dynamics
title_fullStr Cross validation of a multi-modal dataset describing temperature-induced rock slope dynamics
title_full_unstemmed Cross validation of a multi-modal dataset describing temperature-induced rock slope dynamics
title_sort cross validation of a multi-modal dataset describing temperature-induced rock slope dynamics
publishDate 2019
url https://hdl.handle.net/20.500.11850/363439
https://doi.org/10.3929/ethz-b-000363439
long_lat ENVELOPE(-57.083,-57.083,-63.550,-63.550)
geographic Buttress
geographic_facet Buttress
genre permafrost
genre_facet permafrost
op_relation http://hdl.handle.net/20.500.11850/363439
doi:10.3929/ethz-b-000363439
op_rights info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International
op_rightsnorm CC-BY
op_doi https://doi.org/20.500.11850/363439
https://doi.org/10.3929/ethz-b-000363439
_version_ 1766166033866948608