A Lagrangian Analysis of the Dynamical and Thermodynamic Drivers of Greenland Warm Events during 1979-2017

The acceleration of mass loss from the Greenland Ice Sheet (GrIS) since the late 1990s was primarily driven by increased surface melt, partly concentrated in single extreme melt events. A textbook example was observed around 12 July 2012 (EV69), when almost the entire GrIS was melting, including Sum...

Full description

Bibliographic Details
Main Author: Hermann, Mauro
Other Authors: Papritz, Lukas, Wernli, Heini
Language:English
Published: ETH Zurich, Institute for Atmospheric and Climate Science (IAC) 2019
Subjects:
Online Access:https://hdl.handle.net/20.500.11850/348060
https://doi.org/10.3929/ethz-b-000348060
id ftethz:oai:www.research-collection.ethz.ch:20.500.11850/348060
record_format openpolar
spelling ftethz:oai:www.research-collection.ethz.ch:20.500.11850/348060 2023-05-15T15:19:27+02:00 A Lagrangian Analysis of the Dynamical and Thermodynamic Drivers of Greenland Warm Events during 1979-2017 Hermann, Mauro Papritz, Lukas Wernli, Heini 2019-04-05 application/application/pdf https://hdl.handle.net/20.500.11850/348060 https://doi.org/10.3929/ethz-b-000348060 en eng ETH Zurich, Institute for Atmospheric and Climate Science (IAC) http://hdl.handle.net/20.500.11850/348060 doi:10.3929/ethz-b-000348060 info:eu-repo/semantics/openAccess http://rightsstatements.org/page/InC-NC/1.0/ In Copyright - Non-Commercial Use Permitted atmospheric dynamics Greenland warm events ERA-Interim backward trajectories info:eu-repo/classification/ddc/500 Natural sciences 2019 ftethz https://doi.org/20.500.11850/348060 https://doi.org/10.3929/ethz-b-000348060 2022-04-25T13:50:20Z The acceleration of mass loss from the Greenland Ice Sheet (GrIS) since the late 1990s was primarily driven by increased surface melt, partly concentrated in single extreme melt events. A textbook example was observed around 12 July 2012 (EV69), when almost the entire GrIS was melting, including Summit Station at 3216 m in the dry inland plateau. The melt event coincided with strong meridional air mass transport towards the GrIS followed by a Greenland blocking, which resembles the anomalous synoptic pattern that became increasingly frequent in the North Atlantic region in the last two decades. Here, we investigate the atmospheric forcing of extraordinary melt periods by assessing the main dynamical and thermodynamic processes that cause so-called warm events. We present an ERA-Interim-based climatology of 77 Greenland warm events affecting the high accumulation area in 1979-2017. These events became longer and more frequent during the study period. With Lagrangian backward trajectories started from the lowermost ~500 m above the GrIS, we identify transport from a climatologically warmer region as key process for Greenland warm events. With an about 15° latitude more southerly air mass origin and subsidence-induced adiabatic warming, this process is twice as important as diabatic heating to the final warm anomaly over North and East Greenland. In South and West Greenland, major contributions come from ascending air masses and in the Southwest, warm events are dominated by orographically induced latent heating as opposed to transport. 70-85% of all warm events go along with a Greenland blocking, which we suggest induces additional melt via modulations of the surface energy budget not captured by our Lagrangian methodology. We further qualify the importance of the concurrent US Great Plains heatwave for EV69. In contrast to previous studies, we find that air masses arriving over the GrIS during EV69 mostly originated from the Canadian Arctic, Newfoundland and the subtropical North Atlantic, which were partly also anomalously warm. Given the relevance of atmospheric blocking for Greenland warm events and their link to anomalously warm summers, it is crucial, as we argue, to better understand the modification of inter-annual climate variability by climate change in the North Atlantic region, to more accurately predict future GrIS mass loss. Also, more research on cloud radiative effects is needed to capture the GrIS-wide variability of surface energy budget anomalies during Greenland blocking. Other/Unknown Material Arctic Climate change East Greenland Greenland Ice Sheet Newfoundland North Atlantic ETH Zürich Research Collection Arctic Greenland
institution Open Polar
collection ETH Zürich Research Collection
op_collection_id ftethz
language English
topic atmospheric dynamics
Greenland
warm events
ERA-Interim
backward trajectories
info:eu-repo/classification/ddc/500
Natural sciences
spellingShingle atmospheric dynamics
Greenland
warm events
ERA-Interim
backward trajectories
info:eu-repo/classification/ddc/500
Natural sciences
Hermann, Mauro
A Lagrangian Analysis of the Dynamical and Thermodynamic Drivers of Greenland Warm Events during 1979-2017
topic_facet atmospheric dynamics
Greenland
warm events
ERA-Interim
backward trajectories
info:eu-repo/classification/ddc/500
Natural sciences
description The acceleration of mass loss from the Greenland Ice Sheet (GrIS) since the late 1990s was primarily driven by increased surface melt, partly concentrated in single extreme melt events. A textbook example was observed around 12 July 2012 (EV69), when almost the entire GrIS was melting, including Summit Station at 3216 m in the dry inland plateau. The melt event coincided with strong meridional air mass transport towards the GrIS followed by a Greenland blocking, which resembles the anomalous synoptic pattern that became increasingly frequent in the North Atlantic region in the last two decades. Here, we investigate the atmospheric forcing of extraordinary melt periods by assessing the main dynamical and thermodynamic processes that cause so-called warm events. We present an ERA-Interim-based climatology of 77 Greenland warm events affecting the high accumulation area in 1979-2017. These events became longer and more frequent during the study period. With Lagrangian backward trajectories started from the lowermost ~500 m above the GrIS, we identify transport from a climatologically warmer region as key process for Greenland warm events. With an about 15° latitude more southerly air mass origin and subsidence-induced adiabatic warming, this process is twice as important as diabatic heating to the final warm anomaly over North and East Greenland. In South and West Greenland, major contributions come from ascending air masses and in the Southwest, warm events are dominated by orographically induced latent heating as opposed to transport. 70-85% of all warm events go along with a Greenland blocking, which we suggest induces additional melt via modulations of the surface energy budget not captured by our Lagrangian methodology. We further qualify the importance of the concurrent US Great Plains heatwave for EV69. In contrast to previous studies, we find that air masses arriving over the GrIS during EV69 mostly originated from the Canadian Arctic, Newfoundland and the subtropical North Atlantic, which were partly also anomalously warm. Given the relevance of atmospheric blocking for Greenland warm events and their link to anomalously warm summers, it is crucial, as we argue, to better understand the modification of inter-annual climate variability by climate change in the North Atlantic region, to more accurately predict future GrIS mass loss. Also, more research on cloud radiative effects is needed to capture the GrIS-wide variability of surface energy budget anomalies during Greenland blocking.
author2 Papritz, Lukas
Wernli, Heini
author Hermann, Mauro
author_facet Hermann, Mauro
author_sort Hermann, Mauro
title A Lagrangian Analysis of the Dynamical and Thermodynamic Drivers of Greenland Warm Events during 1979-2017
title_short A Lagrangian Analysis of the Dynamical and Thermodynamic Drivers of Greenland Warm Events during 1979-2017
title_full A Lagrangian Analysis of the Dynamical and Thermodynamic Drivers of Greenland Warm Events during 1979-2017
title_fullStr A Lagrangian Analysis of the Dynamical and Thermodynamic Drivers of Greenland Warm Events during 1979-2017
title_full_unstemmed A Lagrangian Analysis of the Dynamical and Thermodynamic Drivers of Greenland Warm Events during 1979-2017
title_sort lagrangian analysis of the dynamical and thermodynamic drivers of greenland warm events during 1979-2017
publisher ETH Zurich, Institute for Atmospheric and Climate Science (IAC)
publishDate 2019
url https://hdl.handle.net/20.500.11850/348060
https://doi.org/10.3929/ethz-b-000348060
geographic Arctic
Greenland
geographic_facet Arctic
Greenland
genre Arctic
Climate change
East Greenland
Greenland
Ice Sheet
Newfoundland
North Atlantic
genre_facet Arctic
Climate change
East Greenland
Greenland
Ice Sheet
Newfoundland
North Atlantic
op_relation http://hdl.handle.net/20.500.11850/348060
doi:10.3929/ethz-b-000348060
op_rights info:eu-repo/semantics/openAccess
http://rightsstatements.org/page/InC-NC/1.0/
In Copyright - Non-Commercial Use Permitted
op_doi https://doi.org/20.500.11850/348060
https://doi.org/10.3929/ethz-b-000348060
_version_ 1766349632270499840