Paleoceanographic Evolution of the Antarctic Southern Ocean since the Mid-Pleistocene Transition

The Pleistocene epoch was characterized by orbitally-forced climate oscillations between warm stages and ice ages. The concentration of atmospheric CO2 (pCO2) has varied in step with these so-called glacial-interglacial cycles over at least the last 800 thousand years (kyr), with consistently 80–100...

Full description

Bibliographic Details
Main Author: Hasenfratz, Adam P.
Other Authors: Haug, Gerald, Jaccard, Samuel L., Martínez-García, Alfredo, Hodell, David A., Charles, Christopher D.
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: ETH Zurich 2017
Subjects:
Online Access:https://hdl.handle.net/20.500.11850/181636
https://doi.org/10.3929/ethz-b-000181636
id ftethz:oai:www.research-collection.ethz.ch:20.500.11850/181636
record_format openpolar
spelling ftethz:oai:www.research-collection.ethz.ch:20.500.11850/181636 2023-06-11T04:06:54+02:00 Paleoceanographic Evolution of the Antarctic Southern Ocean since the Mid-Pleistocene Transition Hasenfratz, Adam P. Haug, Gerald Jaccard, Samuel L. Martínez-García, Alfredo Hodell, David A. Charles, Christopher D. 2017 application/application/pdf https://hdl.handle.net/20.500.11850/181636 https://doi.org/10.3929/ethz-b-000181636 en eng ETH Zurich info:eu-repo/grantAgreement/SNF/Projektförderung in Mathematik, Natur- und Ingenieurwissenschaften (Abteilung II)/131886 http://hdl.handle.net/20.500.11850/181636 doi:10.3929/ethz-b-000181636 info:eu-repo/semantics/openAccess http://rightsstatements.org/page/InC-NC/1.0/ In Copyright - Non-Commercial Use Permitted PALEOCEANOGRAPHY BIOGEOCHEMISTRY info:eu-repo/classification/ddc/550 Earth sciences info:eu-repo/semantics/doctoralThesis 2017 ftethz https://doi.org/20.500.11850/18163610.3929/ethz-b-000181636 2023-04-23T23:45:50Z The Pleistocene epoch was characterized by orbitally-forced climate oscillations between warm stages and ice ages. The concentration of atmospheric CO2 (pCO2) has varied in step with these so-called glacial-interglacial cycles over at least the last 800 thousand years (kyr), with consistently 80–100 parts per million per volume (ppmv) lower pCO2 during ice ages. The Southern Ocean, a large water body that entirely encircles the Antarctic continent, exerts a dominant control on the partitioning of CO2 between the ocean interior and the atmosphere through its leverage on the efficiency of the biological pump. In the modern Southern Ocean, nutrient- and CO2-rich deep waters ascend to the surface ocean where iron limitation restricts the fixation of the major nutrients by phytoplankton, allowing for the evasion of deeply sequestered carbon to the atmosphere. In the Antarctic Zone of the Southern Ocean, south of the Antarctic Polar Front, the evasion of CO2 was reduced during ice ages by increased sea- ice cover and/or by a cooling-induced increase in stratification. In the northward Subantarctic Zone, a glacial increase in dust-derived iron was suggested to have stimulated marine export production, thereby contributing to enhanced deep ocean sequestration of carbon. While these two regions of the Southern Ocean provide a coherent two-part mechanism to explain the bulk of the glacial-interglacial pCO2 variations, the specific combination of processes modulating atmospheric pCO2 on longer time scales are not fully understood. The main focus of this thesis is on the mid-Pleistocene transition (MPT; ~1.2 to 0.7 million years ago (Ma)), when the climate cycles shifted from 41- to ~100-kyr periodicities in the absence of any substantial changes in the orbital parameters that control the amount of incoming solar radiation. Many of the proposed hypotheses are related to internal feedbacks within the climate system, and involve global cooling and an associated decline in glacial atmospheric CO2. Whereas evidence suggests ... Doctoral or Postdoctoral Thesis Antarc* Antarctic Sea ice Southern Ocean ETH Zürich Research Collection Antarctic Southern Ocean The Antarctic
institution Open Polar
collection ETH Zürich Research Collection
op_collection_id ftethz
language English
topic PALEOCEANOGRAPHY
BIOGEOCHEMISTRY
info:eu-repo/classification/ddc/550
Earth sciences
spellingShingle PALEOCEANOGRAPHY
BIOGEOCHEMISTRY
info:eu-repo/classification/ddc/550
Earth sciences
Hasenfratz, Adam P.
Paleoceanographic Evolution of the Antarctic Southern Ocean since the Mid-Pleistocene Transition
topic_facet PALEOCEANOGRAPHY
BIOGEOCHEMISTRY
info:eu-repo/classification/ddc/550
Earth sciences
description The Pleistocene epoch was characterized by orbitally-forced climate oscillations between warm stages and ice ages. The concentration of atmospheric CO2 (pCO2) has varied in step with these so-called glacial-interglacial cycles over at least the last 800 thousand years (kyr), with consistently 80–100 parts per million per volume (ppmv) lower pCO2 during ice ages. The Southern Ocean, a large water body that entirely encircles the Antarctic continent, exerts a dominant control on the partitioning of CO2 between the ocean interior and the atmosphere through its leverage on the efficiency of the biological pump. In the modern Southern Ocean, nutrient- and CO2-rich deep waters ascend to the surface ocean where iron limitation restricts the fixation of the major nutrients by phytoplankton, allowing for the evasion of deeply sequestered carbon to the atmosphere. In the Antarctic Zone of the Southern Ocean, south of the Antarctic Polar Front, the evasion of CO2 was reduced during ice ages by increased sea- ice cover and/or by a cooling-induced increase in stratification. In the northward Subantarctic Zone, a glacial increase in dust-derived iron was suggested to have stimulated marine export production, thereby contributing to enhanced deep ocean sequestration of carbon. While these two regions of the Southern Ocean provide a coherent two-part mechanism to explain the bulk of the glacial-interglacial pCO2 variations, the specific combination of processes modulating atmospheric pCO2 on longer time scales are not fully understood. The main focus of this thesis is on the mid-Pleistocene transition (MPT; ~1.2 to 0.7 million years ago (Ma)), when the climate cycles shifted from 41- to ~100-kyr periodicities in the absence of any substantial changes in the orbital parameters that control the amount of incoming solar radiation. Many of the proposed hypotheses are related to internal feedbacks within the climate system, and involve global cooling and an associated decline in glacial atmospheric CO2. Whereas evidence suggests ...
author2 Haug, Gerald
Jaccard, Samuel L.
Martínez-García, Alfredo
Hodell, David A.
Charles, Christopher D.
format Doctoral or Postdoctoral Thesis
author Hasenfratz, Adam P.
author_facet Hasenfratz, Adam P.
author_sort Hasenfratz, Adam P.
title Paleoceanographic Evolution of the Antarctic Southern Ocean since the Mid-Pleistocene Transition
title_short Paleoceanographic Evolution of the Antarctic Southern Ocean since the Mid-Pleistocene Transition
title_full Paleoceanographic Evolution of the Antarctic Southern Ocean since the Mid-Pleistocene Transition
title_fullStr Paleoceanographic Evolution of the Antarctic Southern Ocean since the Mid-Pleistocene Transition
title_full_unstemmed Paleoceanographic Evolution of the Antarctic Southern Ocean since the Mid-Pleistocene Transition
title_sort paleoceanographic evolution of the antarctic southern ocean since the mid-pleistocene transition
publisher ETH Zurich
publishDate 2017
url https://hdl.handle.net/20.500.11850/181636
https://doi.org/10.3929/ethz-b-000181636
geographic Antarctic
Southern Ocean
The Antarctic
geographic_facet Antarctic
Southern Ocean
The Antarctic
genre Antarc*
Antarctic
Sea ice
Southern Ocean
genre_facet Antarc*
Antarctic
Sea ice
Southern Ocean
op_relation info:eu-repo/grantAgreement/SNF/Projektförderung in Mathematik, Natur- und Ingenieurwissenschaften (Abteilung II)/131886
http://hdl.handle.net/20.500.11850/181636
doi:10.3929/ethz-b-000181636
op_rights info:eu-repo/semantics/openAccess
http://rightsstatements.org/page/InC-NC/1.0/
In Copyright - Non-Commercial Use Permitted
op_doi https://doi.org/20.500.11850/18163610.3929/ethz-b-000181636
_version_ 1768379143126253568