Bimodality in ensemble forecasts of 2 m temperature: identification

International audience Bimodality and other types of non-Gaussianity arise in ensemble forecasts of the atmosphere as a result of nonlinear spread across ensemble members. In this paper, bimodality in 50-member ECMWF ENS-extended ensemble forecasts is identified and characterized. Forecasts of 2 m t...

Full description

Bibliographic Details
Published in:Weather and Climate Dynamics
Main Authors: Bertossa, Cameron, Hitchcock, Peter, Degaetano, Arthur, Plougonven, Riwal
Other Authors: Cornell University New York, Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://insu.hal.science/insu-03726928
https://insu.hal.science/insu-03726928/document
https://insu.hal.science/insu-03726928/file/wcd-2-1209-2021.pdf
https://doi.org/10.5194/wcd-2-1209-2021
Description
Summary:International audience Bimodality and other types of non-Gaussianity arise in ensemble forecasts of the atmosphere as a result of nonlinear spread across ensemble members. In this paper, bimodality in 50-member ECMWF ENS-extended ensemble forecasts is identified and characterized. Forecasts of 2 m temperature are found to exhibit widespread bimodality well over a derived false-positive rate. In some regions bimodality occurs in excess of 30 % of forecasts, with the largest rates occurring during lead times of 2 to 3 weeks. Bimodality occurs more frequently in the winter hemisphere with indications of baroclinicity being a factor to its development. Additionally, bimodality is more common over the ocean, especially the polar oceans, which may indicate development caused by boundary conditions (such as sea ice). Near the equatorial region, bimodality remains common during either season and follows similar patterns to the Intertropical Convergence Zone (ITCZ), suggesting convection as a possible source for its development. Over some continental regions the modes of the forecasts are separated by up to 15 °C. The probability density for the modes can be up to 4 times greater than at the minimum between the modes, which lies near the ensemble mean. The widespread presence of such bimodality has potentially important implications for decision makers acting on these forecasts. Bimodality also has implications for assessing forecast skill and for statistical postprocessing: several commonly used skill-scoring methods and ensemble dressing methods are found to perform poorly in the presence of bimodality, suggesting the need for improvements in how non-Gaussian ensemble forecasts are evaluated.